Jet breakup length is an important parameter which reflects the length of sprinkler range.Based on the linear instability theory,the dispersion equation of cylindrical jet was established and the theoretical value of ...Jet breakup length is an important parameter which reflects the length of sprinkler range.Based on the linear instability theory,the dispersion equation of cylindrical jet was established and the theoretical value of jet breakup length was calculated.The jet breakup length and initial amplitude of surface wave were measured by applying the high-speed photography technology.Meanwhile,the numerical simulation was conducted by combining Level Set-VOF method for describing the jet breakup length to verify the theoretical and experimental results.Within the jet velocity and working pressure range of discussion,the results of comparison showed that the theoretical analysis gave a reasonable explanation to the influence of jet velocity,nozzle diameter and nozzle cone angle on jet breakup length.Comparing the theoretical value of jet breakup length with the experimental and simulated values,the three results accorded one another.The experimental jet breakup lengths were the lowest and the simulation values were the largest,and the relative error was less than 10%,especially the theoretical value was closer to the average value.For choosing the theoretical calculation of jet breakup length,a semi-empirical and semi-theoretical formula of range for the rotating sprinkler was concluded by the curve fitting method and the fitting formula was verified.The results showed the high accuracy of the ranges determined by this formula and the average relative error was less than 2.5%.The new formula was in good agreement with the data of different types of sprinklers comparing with other empirical formulas,and the error was only 5%.Meanwhile,the possibility of using this formula widely to determine the ranges of same series of sprinkler was confirmed.展开更多
Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Theref...Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Therefore, the jet breakup should be avoided as possible in industrial production. The objective of this study is to find the relation of the processing parameters of the ACC equipment versus the breakup length of jet with weaker turbulence. To obtain quantitative findings, not only relative experimental study but also numerical simulation was carded out. For a weaker turbulent water jet, the breakup length increases with the increase of jet diameter, as well as with the jet velocity; jet diameter has a significant effect on the breakup length for a certain flow rate when compared with jet velocity; finally a suggested correlation of the jet breakup length versus jet Weber number is presented in this study.展开更多
For the solutions of random variations of metal jet breakup and difficulties in controlling and predicting the process parameters (e.g. jet length) in micro droplet deposition manufacturing technique, experimental m...For the solutions of random variations of metal jet breakup and difficulties in controlling and predicting the process parameters (e.g. jet length) in micro droplet deposition manufacturing technique, experimental methods combining with theoretical analyses have been developed. The jet formation, jet length and their dominant factors (oxygen concentration and disturbance frequency, etc.) are discussed. The statistical law of jet length is found that the probability density function (PDF) of jet length is a log-normal distribution. The results show that the formation and size accuracy of metal jet breakup are improved by adjusting the gas pressure and optimizing the disturbance frequency. Under this circumstance, the jet length and morphological deviation can be minimized, which provides a stable droplet stream for the subsequent manufacturing process.展开更多
Experiments were carried out to investigate the influences of nozzle geometric parameters and injection pressure on jet breakup characteristics using a high-speed photography(HSP)technique.The flow rates and spraying ...Experiments were carried out to investigate the influences of nozzle geometric parameters and injection pressure on jet breakup characteristics using a high-speed photography(HSP)technique.The flow rates and spraying ranges of sprinkler with different nozzles were measured.In this research,HSP technique was also used to photograph the drops emitted by sprinkler with different nozzles at different pressures,photographs were taken at different horizontal distances from the sprinkler and the equivalent circle diameter was used to represent the particle sizes.Based on HSP technology,the effects of flow velocity and nozzle geometric parameters on jet breakup length were studied,and the droplet diameters with different nozzle types were obtained.The result showed that for the sprinkler with different nozzles,the breakup length decreased with the increases of pressures.At the nearby(3-9 m)region and distant(12-18 m)region of sprinkler,the droplet diameters of sprinkler with type B nozzle were the largest,which meant the sprinkler with type B nozzle was the optimal choice by synthesizing the droplet diameter distribution.The fitting relationship of jet breakup length with Reynolds number and Weber number(Re and We),and the regression equation of the end droplet diameters were deduced with errors of less than 5%and 4%respectively.展开更多
为探明摇臂式喷头射流碎裂机理,基于VOF多相流模型理论,采用计算流体动力学(CFD)分析软件Fluent,在200~600 k Pa的中低压条件下,使用几何重建(Geometry reconstruction)方法进行界面跟踪,用瞬态PISO方案求解控制方程,对摇臂式喷头...为探明摇臂式喷头射流碎裂机理,基于VOF多相流模型理论,采用计算流体动力学(CFD)分析软件Fluent,在200~600 k Pa的中低压条件下,使用几何重建(Geometry reconstruction)方法进行界面跟踪,用瞬态PISO方案求解控制方程,对摇臂式喷头圆射流初级碎裂进行数值模拟,获得了初级碎裂液滴直径和射流碎裂长度。采用高速摄影技术进行实验测量,分析了初级碎裂液滴直径和射流碎裂长度模拟值和实测值的相对误差,讨论了初级碎裂液滴直径和射流碎裂长度随喷嘴直径和工作压力的变化情况。结果表明,摇臂式喷头圆射流初级碎裂包括连续段、过渡段和碎裂段3个典型形态,喷嘴直径和入口压力是影响射流碎裂长度和射流初级碎裂液滴直径的主要因素,射流初级碎裂液滴直径D与喷嘴直径d(d〉5 mm)有较好的相关性(D=1.634d,R2=0.912),初级碎裂液滴直径的模拟值与实测值相对误差为23.92%,拟合精度良好。给出了射流碎裂长度L与韦伯数We的拟合模型,该模型能较好预测摇臂式喷头在低压条件下射流碎裂长度。展开更多
基金We acknowledge that this work was financially supported by the National Natural Science Foundation of China(No.51679109)the Natural Science Foundation of Jiangsu Province(BK20170555)+2 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(17KJB470001)Special Fund for Ago-scientific Research in the Public Interest of China(201503130)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Jet breakup length is an important parameter which reflects the length of sprinkler range.Based on the linear instability theory,the dispersion equation of cylindrical jet was established and the theoretical value of jet breakup length was calculated.The jet breakup length and initial amplitude of surface wave were measured by applying the high-speed photography technology.Meanwhile,the numerical simulation was conducted by combining Level Set-VOF method for describing the jet breakup length to verify the theoretical and experimental results.Within the jet velocity and working pressure range of discussion,the results of comparison showed that the theoretical analysis gave a reasonable explanation to the influence of jet velocity,nozzle diameter and nozzle cone angle on jet breakup length.Comparing the theoretical value of jet breakup length with the experimental and simulated values,the three results accorded one another.The experimental jet breakup lengths were the lowest and the simulation values were the largest,and the relative error was less than 10%,especially the theoretical value was closer to the average value.For choosing the theoretical calculation of jet breakup length,a semi-empirical and semi-theoretical formula of range for the rotating sprinkler was concluded by the curve fitting method and the fitting formula was verified.The results showed the high accuracy of the ranges determined by this formula and the average relative error was less than 2.5%.The new formula was in good agreement with the data of different types of sprinklers comparing with other empirical formulas,and the error was only 5%.Meanwhile,the possibility of using this formula widely to determine the ranges of same series of sprinkler was confirmed.
文摘Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Therefore, the jet breakup should be avoided as possible in industrial production. The objective of this study is to find the relation of the processing parameters of the ACC equipment versus the breakup length of jet with weaker turbulence. To obtain quantitative findings, not only relative experimental study but also numerical simulation was carded out. For a weaker turbulent water jet, the breakup length increases with the increase of jet diameter, as well as with the jet velocity; jet diameter has a significant effect on the breakup length for a certain flow rate when compared with jet velocity; finally a suggested correlation of the jet breakup length versus jet Weber number is presented in this study.
基金National High-tech Research and Development Program of China (2008AA03A238)Fund for the Doctoral Program of Higher Education of China (20070699076)Foundation for the Author of National Excellent Doctoral Dissertation of China (2007B3)
文摘For the solutions of random variations of metal jet breakup and difficulties in controlling and predicting the process parameters (e.g. jet length) in micro droplet deposition manufacturing technique, experimental methods combining with theoretical analyses have been developed. The jet formation, jet length and their dominant factors (oxygen concentration and disturbance frequency, etc.) are discussed. The statistical law of jet length is found that the probability density function (PDF) of jet length is a log-normal distribution. The results show that the formation and size accuracy of metal jet breakup are improved by adjusting the gas pressure and optimizing the disturbance frequency. Under this circumstance, the jet length and morphological deviation can be minimized, which provides a stable droplet stream for the subsequent manufacturing process.
基金the National Natural Science Foundation of China(51379090,51279068)Special Fund for Ago-scientific Research in the Public Interest of China(201503130)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20140565)Jiangsu Scientific Research and Innovation Program for Graduates in the Universities(No.KYLX_1041)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Experiments were carried out to investigate the influences of nozzle geometric parameters and injection pressure on jet breakup characteristics using a high-speed photography(HSP)technique.The flow rates and spraying ranges of sprinkler with different nozzles were measured.In this research,HSP technique was also used to photograph the drops emitted by sprinkler with different nozzles at different pressures,photographs were taken at different horizontal distances from the sprinkler and the equivalent circle diameter was used to represent the particle sizes.Based on HSP technology,the effects of flow velocity and nozzle geometric parameters on jet breakup length were studied,and the droplet diameters with different nozzle types were obtained.The result showed that for the sprinkler with different nozzles,the breakup length decreased with the increases of pressures.At the nearby(3-9 m)region and distant(12-18 m)region of sprinkler,the droplet diameters of sprinkler with type B nozzle were the largest,which meant the sprinkler with type B nozzle was the optimal choice by synthesizing the droplet diameter distribution.The fitting relationship of jet breakup length with Reynolds number and Weber number(Re and We),and the regression equation of the end droplet diameters were deduced with errors of less than 5%and 4%respectively.
文摘为探明摇臂式喷头射流碎裂机理,基于VOF多相流模型理论,采用计算流体动力学(CFD)分析软件Fluent,在200~600 k Pa的中低压条件下,使用几何重建(Geometry reconstruction)方法进行界面跟踪,用瞬态PISO方案求解控制方程,对摇臂式喷头圆射流初级碎裂进行数值模拟,获得了初级碎裂液滴直径和射流碎裂长度。采用高速摄影技术进行实验测量,分析了初级碎裂液滴直径和射流碎裂长度模拟值和实测值的相对误差,讨论了初级碎裂液滴直径和射流碎裂长度随喷嘴直径和工作压力的变化情况。结果表明,摇臂式喷头圆射流初级碎裂包括连续段、过渡段和碎裂段3个典型形态,喷嘴直径和入口压力是影响射流碎裂长度和射流初级碎裂液滴直径的主要因素,射流初级碎裂液滴直径D与喷嘴直径d(d〉5 mm)有较好的相关性(D=1.634d,R2=0.912),初级碎裂液滴直径的模拟值与实测值相对误差为23.92%,拟合精度良好。给出了射流碎裂长度L与韦伯数We的拟合模型,该模型能较好预测摇臂式喷头在低压条件下射流碎裂长度。