期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Experimental Investigation on Flow and Heat Transfer of Jet Impingement inside a Semi-Confined Smooth Channel 被引量:2
1
作者 张靖周 刘波 徐华胜 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期16-25,共10页
Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000... Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000),orifice-to-target spacing(zn=1d—4d)and jet-to-jet pitches(xn=3d—5d,yn=3d—5d)on the convective heat transfer coefficient and discharge coefficient are revealed.For a single-row jets normal impingement,the impingement heat transfer is enhanced with the increase of impingement Reynolds number or the decrease of spanwise jet-to-jet pitch.The highest local heat transfer is achieved when zn/dis 2.For the double-row jets normal impingement,the laterally-averaged Nusselt number distributions in the vicinity of the first row jets impinging stagnation do not fit well with the single-row case.The highest local heat transfer is obtained when zn/dis 1.A smaller jetto-jet pitch generally results in a lower discharge coefficient.The discharge coefficient in the double-row case is decreased relative to the single-row case at the same impingement Reynolds number. 展开更多
关键词 jet impingement semi-confined channel convective heat transfer discharge coefficient
下载PDF
Planar collisionless jet impingement on a specular reflective plate 被引量:1
2
作者 Chunpei Cai Chun Zou 《Theoretical & Applied Mechanics Letters》 CAS 2012年第2期41-45,共5页
This paper presents a fundamental gas-kinetic study on a high speed planar rarefied jet impinging on a flat plate of specular reflections. Based on previous collisionless planar free jet results, it is straightforward... This paper presents a fundamental gas-kinetic study on a high speed planar rarefied jet impinging on a flat plate of specular reflections. Based on previous collisionless planar free jet results, it is straightforward to obtain jet impingement flowfield solutions, and jet impingement for specular reflective plate surface properties. Several direct simulation Monte Carlo simulation results are provided and they validate these analytical solutions of rarefied planar jet flows. The results can find applications in many disciplines, such as materials processing, molecular beams, and space engineering. 展开更多
关键词 rarefied flows jet impingement VACUUM Monte Carlo method
下载PDF
Experimental study on heat transfer enhancement of square-array jet impingement by using an integrated synthetic jet actuator
3
作者 TAN JunWen LYU YuanWei +1 位作者 ZHANG JingZhou ZHANG JingYang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第12期3439-3449,共11页
A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit.To illustrate the potential of this concept,an ... A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit.To illustrate the potential of this concept,an experimental investigation is performed,wherein two jet Reynolds numbers(Re=3000 and 5000),three hole-to-hole pitches(X/d=Y/d=4,5 and 6),and three impinging distances(H/d=2,6 and 10)are considered while the synthetic jet is actuated at a fixed frequency of 180 Hz with a characteristic Reynolds number(Re_(0))of about 2430.The results show that the synthetic jet has rare influence on the stagnation heat transfer of square-array jet but effectively improves the local heat transfer at the central zone of array unit.Its potential is tightly dependent on the array layout,Reynolds number and impinging distance.In general,the spatially-averaged Nusselt number augment behaves more significantly for the situations with smaller jet Reynolds number and bigger impinging distance. 展开更多
关键词 jet impingement heat transfer enhancement square-array jet synthetic jet actuator
原文传递
Numerical Investigation of Jet Impingement Cooling with Supercritical Pressure Carbon Dioxide in a Multi-Layer Cold Plate during High Heat Flux
4
作者 WEN Yaming LI Yulong +1 位作者 LI Jingqi YU Xin-Gang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期237-253,共17页
Jet impingement cooling with supercritical pressure carbon dioxide in a multi-layer cold plate during the heat flux of 400 W/cm_(2) is investigated numerically.The generation and distribution of pseudocritical fluid w... Jet impingement cooling with supercritical pressure carbon dioxide in a multi-layer cold plate during the heat flux of 400 W/cm_(2) is investigated numerically.The generation and distribution of pseudocritical fluid with the high specific heat of supercritical pressure carbon dioxide and the mechanism of the heat transfer enhancement led by the high specific heat are analyzed.For a given nozzle diameter,the effects of the geometric parameters of a multi-layer cold plate such as the relative nozzle-to-plate distance,relative plate thickness,and relative upper fluid thickness on the average heat transfer coefficient are studied.The results show that the target surface is cooled effectively with supercritical pressure carbon dioxide jet impingement cooling.When the radial distance is less than 6 mm,the maximum wall temperature is 368 K,which is 30 K lower than the maximum junction temperature for a silicon-based insulated gate bipolar transistor,a typical electronic power device.There is a pseudocritical fluid layer near the target surface,where specific heat reaches above 34 kJ/(kg·K)locally.The drastic rise of the specific heat leads to obvious heat transfer enhancement.Within a certain range,the local heat transfer coefficient and the specific heat are linearly correlated and Stanton number remains constant over this range.The heat transfer coefficient is at a maximum when the relative nozzle-to-plate distance is 1.As the relative plate thickness increases from 0.5 to 3.5 or the relative upper fluid thickness increases from 0.5 to 2.5,the average heat transfer coefficient decreases monotonically. 展开更多
关键词 high heat flux jet impingement cooling supercritical pressure carbon dioxide heat transfer enhancement
原文传递
CONVEXITY OF THE FREE BOUNDARY FOR AN AXISYMMETRIC INCOMPRESSIBLE IMPINGING JET
5
作者 王晓慧 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期234-246,共13页
This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provi... This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid. 展开更多
关键词 Euler system axisymmetric impinging jet INCOMPRESSIBLE free boundary CONVEXITY
下载PDF
Experimental study of curvature effects on jet impingement heat transfer on concave surfaces 被引量:6
6
作者 Zhou Ying Lin Guiping +2 位作者 Bu Xueqin Bai Lizhan Wen Dongsheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期586-594,共9页
Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects.The expe... Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects.The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters:jet Reynolds number from 27000 to 130000,relative nozzle to surface distance from 3.3 to 30,and relative surface curvature from 0.005 to 0.030.Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics.On one hand,an increase of relative nozzle to surface distance(increasing jet diameter in fact)enhances the average heat transfer around the surface for the same curved surface.On the other hand,the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter.Finally,experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect.This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces,which is of high importance to the design of the aircraft anti-icing system. 展开更多
关键词 Anti-icing system Concave surface Curvature effect Heat transfer jet impingement
原文传递
Experimental investigation and correlation development of jet impingement heat transfer with two rows of aligned jet holes on an internal surface of a wing leading edge 被引量:5
7
作者 Jia YU Long PENG +3 位作者 Xueqin BU Xiaobin SHEN Guiping LIN Lizhan BAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第10期1962-1972,共11页
Extensive experimental studies on the heat transfer characteristics of two rows of aligned jet holes impinging on a concave surface in a wing leading edge were conducted, where50000 Rej 90000, 1.74 H/d 27.5, 66° ... Extensive experimental studies on the heat transfer characteristics of two rows of aligned jet holes impinging on a concave surface in a wing leading edge were conducted, where50000 Rej 90000, 1.74 H/d 27.5, 66° a 90°, and 13.2 r/d 42.03. The finding was that the heat transfer performance at the jet-impingement stagnation point with two rows of aligned jet holes was the same as that with a single row of jet holes or the middle row of three-row configurations when the circumferential angle of the two jet holes was larger than 30°. The attenuation coefficient distribution of the jet impingement heat transfer in the chordwise direction was so complicated that two zones were divided for a better analysis. It indicated that: the attenuation coefficient curve in the jet impingement zone exhibited an approximate upside-down bell shape with double peaks and a single valley; the attenuation coefficient curve in the non-jet impingement zone was like a half-bell shape, which was similar to that with three rows of aligned jet holes; the factors,including Rej, H/d and r/d, affected the attenuation coefficient value at the valley significantly.When r/d was increased from 30.75 to 42.03, the attenuation rates of attenuation coefficient increased only by 1.8%. Consequently, experimental data-based correlation equations of the Nusselt number for the heat transfer at the jet-impingement stagnation point and the distributionof the attenuation coefficient in the chordwise direction were acquired, which play an important role in designing the wing leading edge anti-icing system with two rows of aligned jet holes. 展开更多
关键词 CORRELATION Experiment jet impingement heat transfer Two rows of aligned jet holes Wing anti-icing
原文传递
Experimental investigation on heat transfer characteristics of microcapsule phase change material suspension in array jet impingement 被引量:3
8
作者 ZHANG JiaJie CHEN YanWei +3 位作者 LIU Yang LI Huan ZHAO Rui JIN ZhaoGuo 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第7期1634-1645,共12页
A closed-loop experimental system is established to investigate the heat transfer characteristics of microcapsule phase change material(MEPCM) suspension in an array jet impingement. Eicosane with a melting peak at 4... A closed-loop experimental system is established to investigate the heat transfer characteristics of microcapsule phase change material(MEPCM) suspension in an array jet impingement. Eicosane with a melting peak at 40.8℃ is used as the capsule core of the MEPCM particle. Five kinds of array-hole nozzles with the same hole cross-sectional area are employed to analyze the influence of critical parameters, including the nozzle hole number, hole spacing, impinging distance, and jet temperature. It shows that a 5% suspension may improve the heat transfer coefficient of the array jet by up to 23.5% compared with water. The heat transfer of an array jet is obviously stronger than that of a single jet, but too much hole number is not conducive because of the entrainment interference between adjacent jets. A larger hole spacing or smaller impinging distance may weaken the crossflow accumulation on the impinged surface, thus enhancing the heat transfer capability. The heat transfer coefficient of the array jet presents a secondary peak value at the end of the jet-core region. The latent heat absorption of the capsule core results in superior heat transfer of the suspension compared to that of water only in a specific range of jet temperatures, the optimum of which is approximately 10℃ lower relative to the peak melting temperature. In addition, the melt completion time of a single MEPCM particle and the critical flow rate of the suspension are predicted theoretically. 展开更多
关键词 MEPCM suspension array jet impingement hole spacing CROSS-FLOW jet temperature
原文传递
Experimental Study on Jet Impingement Boiling Heat Transfer in Brass Beads Packed Porous Layer 被引量:3
9
作者 ZHANG Yunsong CHEN Wei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第3期718-729,共12页
Jet impingement boiling has been widely used in industrial facilities as its higher heat transfer coefficient(HTC)and critical heat flux(CHF)can be achieved in comparison with the pool boiling.By covering beads packed... Jet impingement boiling has been widely used in industrial facilities as its higher heat transfer coefficient(HTC)and critical heat flux(CHF)can be achieved in comparison with the pool boiling.By covering beads packed porous layer on the heated wall surface,the enlarged heat transfer area and rise of nucleation sites for boiling occur,thus,the heat transfer performance of boiling can be enhanced.For the jet impingement boiling with brass bead packed porous layers,the heat transfer performance is crucially influenced by the characteristics of porous layer and working fluid flow,so the experiments were conducted to investigate the effects of the jet flow rate,fluid inlet subcooling,number of porous layer and brass bead diameter of porous layer.Comparison study shows that impingement boiling promotes the HTC and CHF as 1.5 times and 2.5 times respectively as pool boiling at similar conditions.Higher heat transfer performance can be obtained in the cases of a higher jet flow rate and a higher fluid inlet subcooling,and there exist the optimal layer number and bead diameter for heat transfer.Particularly,a double-layer porous layer results in an increase of 39%in heat flux at superheat of 30 K compared with a single-layer case;a single porous layer at d=8 mm brings an increase of 23%in heat flux at superheat of 30 K compared with that of bare plain surface.Besides,the actual scene of jet impingement boiling was recorded with a camera to investigate the behavior evolution of vapor bubbles which is highly correlated to the heat transfer process. 展开更多
关键词 jet impingement nucleate boiling beads packed porous layer heat transfer coefficient critical heat flux
原文传递
Modeling and Simulation of a Hybrid Jet-Impingement/Micro-Channel Heat Sink
10
作者 Taidong Xu Hao Liu +2 位作者 Dejun Zhang Yadong Li Xiaoming Zhou 《Fluid Dynamics & Materials Processing》 EI 2021年第1期109-121,共13页
With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit,new strategies are needed to extract heat from these devices in an efficient way.In this regard method... With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit,new strategies are needed to extract heat from these devices in an efficient way.In this regard methods based on the combination of the so-called“jet impingement”and“micro-channel”approaches seem extremely promising for possible improvement and future applications in electronics as well as the aerospace and biomedical fields.In this paper,a hybrid heat sink based on these two technologies is analysed in the frame of an integrated model.Dedicated CFD simulation of the coupled flow/temperature fields and orthogonal tests are performed in order to optimize the overall design.The influence of different sets of structural parameters on the cooling performance is examined.It is shown that an optimal scheme exists for which favourable performance can be obtained in terms of hot spot temperature decrease and thermal uniformity improvement. 展开更多
关键词 jet impingement MICRO-CHANNEL heat sink numerical simulation orthogonal test
下载PDF
Gaskinetic Solutions for High Knudsen Number Planar Jet Impingement Flows
11
作者 Chunpei Cai Chun Zou 《Communications in Computational Physics》 SCIE 2013年第9期960-978,共19页
This paper presents a gaskinetic study and analytical results on high speed rarefied gas flows from a planar exit.The beginning of this paper reviews the results for planar free jet expanding into a vacuum,followed by... This paper presents a gaskinetic study and analytical results on high speed rarefied gas flows from a planar exit.The beginning of this paper reviews the results for planar free jet expanding into a vacuum,followed by an investigation of jet impingement on normally set plates with either a diffuse or a specular surface.Presented results include exact solutions for flowfield and surface properties.Numerical simulations with the direct simulation Monte Carlomethod were performed to validate these analytical results,and good agreement with this is obtained for flows at high Knudsen numbers.These highly rarefied jet and jet impingement results can provide references for real jet and jet impingement flows. 展开更多
关键词 Gaskinetic theory jet jet impingement Monte Carlo method
原文传递
NUMERICAL STUDY OF SEMI-CONFINED SLOT JET IMPINGEMENT
12
作者 Xu Jing lei, Xu Zhong, Huang Shu juan Department of Fluid Engineering, Energy and Power School,Xi′an Jiaotong University, Xi′an 710049, P.R.China (Received June 1, 1998) 《Journal of Hydrodynamics》 SCIE EI CSCD 1999年第3期14-18,共5页
The standard k ε turbulence model in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent slot impinging jet within a semi confined space. A single geo... The standard k ε turbulence model in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent slot impinging jet within a semi confined space. A single geometry with a Reynolds number of 10,000 and a nozzle to plate spacing of eight slot widths has been considered with inlet boundary conditions based on the previous calculated result of a fully developed turbulent 2 D flow. The numerical results of mean velocity agree with the experimental data. But the fluctuating velocity is somewhat poorly predicted. The difference between the numerical study and the experimental data is attributed directly to the turbulence model, and the application of the wall function. 展开更多
关键词 slot impinging jet TURBULENCE model wall function
原文传递
Unsteady analysis of jet impingement under vibration conditions
13
作者 Yue YANG Junkui MAO +1 位作者 Feilong WANG Xingsi HAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期291-308,共18页
The vibration of thermodynamic machinery will affect its cooling system.In this research,a high-resolution simulation of jet impingement was performed to quantify the unsteady turbulent convection under vibration cond... The vibration of thermodynamic machinery will affect its cooling system.In this research,a high-resolution simulation of jet impingement was performed to quantify the unsteady turbulent convection under vibration conditions.A newly developed Self-Adaptive Turbulence Eddy Simulation(SATES)method was used.The Reynolds number was Re=23000,the jet-towall distance was fixed at H/D=2,and the vibrating frequency of the impinging wall f varied from 0 to 200 Hz.Compared with the static wall case,the maximum enhancement of the stagnation point and area averaged Nusselt number within r/D=1 could reach up to 5%due to the larger primary vortices,whereas it could reduce the heat transfer by 10%beyond r/D=3 due to the suppression of the wall vortices development.Based on the unsteady analysis and Proper Orthogonal Decomposition(POD)pattern,the modes controlled by vibration were recognized and their contributions to the heat transfer performance were also evaluated.The introduction of the vibration promoted the development of the primary vortices and changed the radial alternating motion to a vertical alternating motion at the wall jet region.The former was beneficial for the heat transfer,while the latter was unfavorable. 展开更多
关键词 Impinging jet Proper orthogonal decomposition Self-Adaptive Turbulence Eddy Simulation(SATES) Unsteady turbulent convection VIBRATION
原文传递
An experimental study on heat transfer process of multiple mist impinging jets
14
作者 LIU Huafei XIANG Shunhua MA Xinjian 《Baosteel Technical Research》 CAS 2011年第4期49-53,共5页
Mist jet impingement cooling is an enhanced heat transfer method widely used after the continuous galvanizing process. The key of a successful design and operation of the mist jet impingement cooling system lies in ma... Mist jet impingement cooling is an enhanced heat transfer method widely used after the continuous galvanizing process. The key of a successful design and operation of the mist jet impingement cooling system lies in mastering heat transfer coefficients. The heat transfer coefficients of high temperature steel plates cooled with multiple mist impinging jets were experimentally investigated, and the effects of gas and water flow rates on heat transfer coefficients were studied. The test results illustrate that the gas flow rate has little effect on the mist heat transfer rate. It is also found that the water flow rate has a great impact on the heat transfer coefficient. When the water flow rate ranges from 0.96m3/h to 1.59 m3/h, an increase in the rate will produce a higher heat transfer coefficient with a maximum of 5650 W/(m2 · K). Compared with the conventional gas jet cooling, the heat transfer coefficient of the mist jet cooling will be much higher, which can effectively strengthen the after-pot cooling. 展开更多
关键词 multiple mist jet jet impingement heat transfer after-pot cooling
下载PDF
Impact characteristics and stagnation formation on a solid surface by a supersonic abrasive waterjet
15
作者 Kunlapat Thongkaew Jun Wang Guan Heng Yeoh 《International Journal of Extreme Manufacturing》 2019年第4期43-61,共19页
A computational fluid dynamics(CFD)study of the impact characteristics and stagnation formation on a solid target surface by an abrasive waterjet at supersonic velocities is presented to understand the impact process.... A computational fluid dynamics(CFD)study of the impact characteristics and stagnation formation on a solid target surface by an abrasive waterjet at supersonic velocities is presented to understand the impact process.A CFD model is developed and verified by experimental water and particle velocities and then used to simulate the jet impact process.The trends of the stagnation formation and its effect on the jet flow with respect to the jetting and impacting parameters are amply discussed.It is found that stagnation formation at the impact site increases with an increase in the impact time,nozzle standoff distance and nozzle diameter,while the initial peak velocity at the nozzle exit has little effect on the size of the stagnation zone.It is shown that stagnation markedly changes the water and particle flow direction,so that the particle impact angle is varied and the jet impact area is enlarged.The jet structure may be classified to have a free jet flow region,a jet deflection region with a stagnation zone and a wall jet region.Furthermore,the stagnation affects significantly the waterjet and particle energy transferred to the target surface.The average particle velocity across the jet is reduced by approximately one third due to the damping effect of the stagnation under the conditions considered in this study. 展开更多
关键词 abrasive waterjet jet impingement particle velocity flow characteristics impact phenomenon STAGNATION
下载PDF
Investigation of erosion behavior of 304 stainless steel under solid–liquid jet flow impinging at 30° 被引量:8
16
作者 Yan-Lin Zhao Chun-Yan Tang +2 位作者 Jun Yao Zi-Hua Zeng Shi-Gang Dong 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1135-1150,共16页
This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid b... This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid by one-way coupling of solid phase due to its dilute distribution.The simulation results agreed well with experiments.It was found that after impinging particle attrition occurred and particles became round with decreasing length-ratio and particle breakage occurred along the "long" direction.Both experiment and simulations found that the erosion generated on the sample could be divided into three regions that were nominated as stagnant region,cutting transition region and wall jet region.Most particle-wall impacts were found to occur in the cutting transition region and the wall jet region.In the cutting transition region,holes and lip-shaped hogbacks were generated in the same direction as the flow imping.In the wall jet region,furrows and grooves were generated.The averaged grooves depth tended to become constant with the progress of impinging and reach the steady state of erosion in the end.In addition,it was found that impinging effect increased erosion and anti-wear rate. 展开更多
关键词 Solid–liquid flow Impinging jet EROSION EXPERIMENT Numerical simulation
下载PDF
Heat Flux Characterization of DC Laminar-plasma Jets Impinging on a Flat Plate at Atmospheric Pressure 被引量:2
17
作者 孟显 潘文霞 +1 位作者 张文宏 吴承康 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第5期953-958,共6页
By using steady and transient methods, the total heat fluxes and the distributions of the heat flux were measured experimentally for an argon DC laminar plasma jet impinging normally on a flat plate at atmospheric pre... By using steady and transient methods, the total heat fluxes and the distributions of the heat flux were measured experimentally for an argon DC laminar plasma jet impinging normally on a flat plate at atmospheric pressure. Results show that the total heat fluxes measured with a steady method are a little bit higher than those with a transient method. Numerical simulation work was executed to compare with the experimental results. 展开更多
关键词 Heat Flux Characterization of DC Laminar-plasma jets Impinging on a Flat Plate at Atmospheric Pressure HEAT DC
下载PDF
Experimental and numerical investigations on the vortical structures of an impinging jet in crossflow 被引量:1
18
作者 张燕 《Journal of Shanghai University(English Edition)》 CAS 2006年第3期279-280,共2页
The objective of this dissertation is to investigate the impinging jet under the influence of crossflow. It has been known that there exist jet shear layer, impingement on the bottom wall, interactions between the ind... The objective of this dissertation is to investigate the impinging jet under the influence of crossflow. It has been known that there exist jet shear layer, impingement on the bottom wall, interactions between the induced wall jet and the ambient crossflow in near field. There are few intensive studies of the impinging jet in crossflow at home and abroad due to the complexities of flow, such as the formation and evolution of the vortical structures, interactions among vortices, while researches on the temporal and spatial evolution of these vortical structures can promote the practical applications in environment engineering, hydroelectricity engineering, etc., and provide the basis for flow control and improvement through revealing the inherent mechanism and development of the vortical structures. 展开更多
关键词 vortical structure impinging jet CROSSFLOW PIV measurement LES.
下载PDF
Numerical simulation of circular jet impinging on hot steel plate 被引量:1
19
作者 FengliWang MouweiLi +1 位作者 YanqiuZhao FengfuYin 《Journal of University of Science and Technology Beijing》 CSCD 2002年第4期262-264,共3页
Flow structure and heat transfer characteristics of an axisymmetric circularjet impinging on a hot 1Cr18Ni9Ti medium plate have been simulated numerically using computationalfluid dynamic (CFD) code. The relation betw... Flow structure and heat transfer characteristics of an axisymmetric circularjet impinging on a hot 1Cr18Ni9Ti medium plate have been simulated numerically using computationalfluid dynamic (CFD) code. The relation between flow field of jet impingement and its heat transfercapability is analyzed, and the phenomenon that heat transfer at stagnation point is smaller thanthat of points directly around is discussed. The simulation result provides boundary conditions forthermal analysis of medium plate quenching. 展开更多
关键词 heat transfer impinging jet QUENCHING numerical simulations
下载PDF
Design and Characterization of a Horizontal Double Impinging Jet Cell: Determination of Flow Modes at the Surface of a Flat Electrode 被引量:1
20
作者 Désiré M. K. Abro Pierre Dable +3 位作者 Fernando Cortez-Salazar Véronique Amstutz Edith Kouassi Kwa-Koffi Hubert Girault 《Journal of Materials Science and Chemical Engineering》 2016年第8期18-28,共11页
An electrochemical cell consisting of a double horizontal Impinging Jet Cell (IJC) has been conceived and characterized. The purpose of this system is the simultaneous electrodeposition of a composite metal/particle c... An electrochemical cell consisting of a double horizontal Impinging Jet Cell (IJC) has been conceived and characterized. The purpose of this system is the simultaneous electrodeposition of a composite metal/particle coating on both surfaces of a metal sheet. The silica particles imprint in the nickel matrix has allowed to distinguish four different flow areas onto the electrode namely the stagnation area, the radial flow area characterized by a higher flow speed, the return flow area that involves gravity effect, and the drainage area with a constant draining speed. Based on the limiting current evolution as a function of the Reynolds number, three flow modes were extracted: the Laminar Low Flow (LLF), the Laminar High Flow (LHF) and the Disturbance. The IJC investigated ensures a laminar flow for a large range of flow rate from a nozzle-to-sample distance of 19 mm and creates an laminar flow ovoid plan merged with the sample for the high flows. 展开更多
关键词 Impinging jet Cell HYDRODYNAMIC Flow Regimes Electrocodeposition
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部