Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow cha...Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.展开更多
An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle.A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vortic...An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle.A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time.The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures.While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process,the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted.In addition to quantitatively confirming conjectures of previous studies,further insight about the formation,evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.展开更多
A jet noise reduction technique by using the external chevron nozzle with lobed mixer in the double-mixing exhaust system is investigated under cold conditions.The computations of jet field and the experiments of nois...A jet noise reduction technique by using the external chevron nozzle with lobed mixer in the double-mixing exhaust system is investigated under cold conditions.The computations of jet field and the experiments of noise field are conducted with scaled model of high-bypass-ratio turbofan engine mixing exhaust system composed of external chevron nozzle with lobed mixer.The computational results indicate that comparing with the baseline nozzle with lobed mixer,the external chevron nozzle with lobed mixer increases mixing of jet and ambient air near the nozzle exit.The experimental results show that the external chevron nozzle with lobed mixer has better jet noise reduction at low frequencies,and this reduction rises with the increase of chevron bend angle.The experimental results also show that the external chevron nozzle with lobed mixer has sound pressure level(SPL)increase which is not obvious at high frequencies.With chevron bend angle increasing,SPL has relatively marked increase at 60°(directivity angle measured from upstream jet axis)and little fluctuations at 90°and 150°.The external chevron nozzle with lobed mixer has overall sound pressure level(OASPL)reduction in varying degrees at 60°and 150°,but it has little OASPL increase at 90°.展开更多
基金the financial support from the Shanghai Sailing Program,China(21YF1409500)the National Natural Science Foundation of China(22308100,22308105)+1 种基金the State Key Laboratory of Chemical Engineering(SKL-ChE-23Z01)the National Science Fund for Distinguished Young Scholars of China(22225804).
文摘Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.
文摘An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle.A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time.The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures.While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process,the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted.In addition to quantitatively confirming conjectures of previous studies,further insight about the formation,evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.
文摘A jet noise reduction technique by using the external chevron nozzle with lobed mixer in the double-mixing exhaust system is investigated under cold conditions.The computations of jet field and the experiments of noise field are conducted with scaled model of high-bypass-ratio turbofan engine mixing exhaust system composed of external chevron nozzle with lobed mixer.The computational results indicate that comparing with the baseline nozzle with lobed mixer,the external chevron nozzle with lobed mixer increases mixing of jet and ambient air near the nozzle exit.The experimental results show that the external chevron nozzle with lobed mixer has better jet noise reduction at low frequencies,and this reduction rises with the increase of chevron bend angle.The experimental results also show that the external chevron nozzle with lobed mixer has sound pressure level(SPL)increase which is not obvious at high frequencies.With chevron bend angle increasing,SPL has relatively marked increase at 60°(directivity angle measured from upstream jet axis)and little fluctuations at 90°and 150°.The external chevron nozzle with lobed mixer has overall sound pressure level(OASPL)reduction in varying degrees at 60°and 150°,but it has little OASPL increase at 90°.