[Objective] The research aimed to study the short-time forecast method of winterminimum temperature in the northern area of Fujian.[Method] By analyzing the variation trends and distribution characteristics of extreme...[Objective] The research aimed to study the short-time forecast method of winterminimum temperature in the northern area of Fujian.[Method] By analyzing the variation trends and distribution characteristics of extremely and averageminimum temperatures in northern Fujian in winter during 1969-2008,the relative meteorological factors which affected the low temperature weather in winter were found.The influences of relative meteorological factors on winterminimum temperature and the forecast method were summarized by combining with the climate characteristics in northern Fujian.[Result] Winterminimum temperature in Guangze and Pucheng in the north of northern Fujian was the lowest.The second one was in Shaowu,Wuyishan,Jianyang,Songxi and Zhenghe.Theminimum temperature in Jian’ou and Shunchang was higher and was the highest in Yanping.Theminimum temperature mainly depended on the temperature reduction degree from the afternoon to the night.The temperature reduction degree varied with the sky condition and cold air intensity.The temperature reduction included the advection,radiation,advection-radiation and non-advection-radiation types.The temperature had the different reduction characteristics under the different sky conditions.The forecast ofminimum temperature should be carried out based on the weather typing.Meanwhile,the successful forecast key ofminimum temperature was grasping the shift pathway and speed of cold air.[Conclusion] The research provided the theory basis for improving the forecast accuracy of winterminimum temperature.展开更多
Southwest Fujian area has experienced a large-scale transgression regression cycle in Late Triassic-Middle Jurassic and the maximum transgression has taken place in Early Jurassic. The migration and enrichment of geoc...Southwest Fujian area has experienced a large-scale transgression regression cycle in Late Triassic-Middle Jurassic and the maximum transgression has taken place in Early Jurassic. The migration and enrichment of geochemical element in the continuous fine-grained sediments in the basin recorded the paleosalinity and the paleodepth. The changes of paleosalinity and paleodepth indicate the sea(lake) level relative change in every period of Late Triassic-Middle Jurassic in southwestern Fujian. The relative change curve of sea(lake) level in southwestern Fujian is established based on the m value(m=100×w(MgO)/w(Al2 O3)) and the ratios of w(B)/w(Ga), w(Sr)/w(Ba) and w(Ca)/w(Mg). The curve indicates that level I sea-level relative change in southwestern Fujian is composed of the transgression in Late Triassic-Early Jurassic and the regression in the late period of Early Jurassic-Middle Jurassic. The level III sea-level relative change is frequent, which is composed by the lake level descent lake level rise lake level descent of Wenbin Shan formation in Late Triassic, the regression transgression regression of Lishan formation in Early Jurassic and the lake level rise lake level descent-lake level rise lake level descent of Zhangping formation in Middle Jurassic. The transgression regression cycle in southwestern Fujian is significantly controlled by the sea-level change in the north of South China Sea. The relative change curve trends of the level I sea-level in the north of South China Sea and the one in southwestern Fujian are the same. The maximum transgressions both occur in Early Jurassic. The level III sea-level curve reflects the fluctuation of a transgression and two regressions in the early period of Early Jurassic.展开更多
文摘[Objective] The research aimed to study the short-time forecast method of winterminimum temperature in the northern area of Fujian.[Method] By analyzing the variation trends and distribution characteristics of extremely and averageminimum temperatures in northern Fujian in winter during 1969-2008,the relative meteorological factors which affected the low temperature weather in winter were found.The influences of relative meteorological factors on winterminimum temperature and the forecast method were summarized by combining with the climate characteristics in northern Fujian.[Result] Winterminimum temperature in Guangze and Pucheng in the north of northern Fujian was the lowest.The second one was in Shaowu,Wuyishan,Jianyang,Songxi and Zhenghe.Theminimum temperature in Jian’ou and Shunchang was higher and was the highest in Yanping.Theminimum temperature mainly depended on the temperature reduction degree from the afternoon to the night.The temperature reduction degree varied with the sky condition and cold air intensity.The temperature reduction included the advection,radiation,advection-radiation and non-advection-radiation types.The temperature had the different reduction characteristics under the different sky conditions.The forecast ofminimum temperature should be carried out based on the weather typing.Meanwhile,the successful forecast key ofminimum temperature was grasping the shift pathway and speed of cold air.[Conclusion] The research provided the theory basis for improving the forecast accuracy of winterminimum temperature.
基金Project(XQ-2007-03(08)-03) supported by the Potential of Oil and Gas Resources Research and Strategy Selection of Mesozoic in the Southern South China SeaProject(40972074) supported by the National Natural Science Foundation of ChinaProject(2013M530976) supported by the Postdoctoral Science Foundation of China
文摘Southwest Fujian area has experienced a large-scale transgression regression cycle in Late Triassic-Middle Jurassic and the maximum transgression has taken place in Early Jurassic. The migration and enrichment of geochemical element in the continuous fine-grained sediments in the basin recorded the paleosalinity and the paleodepth. The changes of paleosalinity and paleodepth indicate the sea(lake) level relative change in every period of Late Triassic-Middle Jurassic in southwestern Fujian. The relative change curve of sea(lake) level in southwestern Fujian is established based on the m value(m=100×w(MgO)/w(Al2 O3)) and the ratios of w(B)/w(Ga), w(Sr)/w(Ba) and w(Ca)/w(Mg). The curve indicates that level I sea-level relative change in southwestern Fujian is composed of the transgression in Late Triassic-Early Jurassic and the regression in the late period of Early Jurassic-Middle Jurassic. The level III sea-level relative change is frequent, which is composed by the lake level descent lake level rise lake level descent of Wenbin Shan formation in Late Triassic, the regression transgression regression of Lishan formation in Early Jurassic and the lake level rise lake level descent-lake level rise lake level descent of Zhangping formation in Middle Jurassic. The transgression regression cycle in southwestern Fujian is significantly controlled by the sea-level change in the north of South China Sea. The relative change curve trends of the level I sea-level in the north of South China Sea and the one in southwestern Fujian are the same. The maximum transgressions both occur in Early Jurassic. The level III sea-level curve reflects the fluctuation of a transgression and two regressions in the early period of Early Jurassic.