The M=7.6 Jiji (Chi-Chi) earthquake, Taiwan Province, on September 21, 1999 (local time) is a thrust fault style earthquake. The empirical attenuation relations of the horizontal and vertical peak ground accelerations...The M=7.6 Jiji (Chi-Chi) earthquake, Taiwan Province, on September 21, 1999 (local time) is a thrust fault style earthquake. The empirical attenuation relations of the horizontal and vertical peak ground accelerations (PGA) for the Jiji (Chi-Chi) earthquake are developed by regression method. By examining the residuals from the Jiji (Chi-Chi) earthquake-specific peak acceleration attenuation relations, it is found that there are systematic differences between PGA on the hanging-wall and footwall. The recorded peak accelerations are higher on the hanging-wall and lower on the footwall. The clear asymmetry of PGA distribution to the surface rupture trace can also be seen from the PGA contour map. These evidences indicate that the PGA attenuates faster on the hanging-wall than on the footwall. In the study of near-source strong motion, seismic hazard assessment, scenario earthquake and seismic disaster prediction, the style-of-faulting must be considered in order that the attenuation model can reflect the characteristic of ground motion in various seismic environmental regions.展开更多
A large earthquake (Mw=7.6) occurred in Jiji (Chi-Chi), Taiwan, China on September 20, 1999, and was followed by many moderate-size shocks in the following days. Two of the largest aftershocks with the magnitudes of M...A large earthquake (Mw=7.6) occurred in Jiji (Chi-Chi), Taiwan, China on September 20, 1999, and was followed by many moderate-size shocks in the following days. Two of the largest aftershocks with the magnitudes of Mw=6.1 and Mw=6.2, respectively, were used as empirical Green's functions (EGFs) to obtain the source time functions (STFs) of the main shock from long-period waveform data of the Global Digital Seismograph Network (GDSN) including IRIS, GEOSCOPE and CDSN. For the Mw=6.1 aftershock of September 22, there were 97 pairs of phases clear enough from 78 recordings of 26 stations; for the Mw=6.2 aftershock of September 25, there were 81 pairs of phases clear enough from 72 recordings of 24 stations. For each station, 2 types of STFs were retrieved, which are called P-STF and S-STF due to being from P and S phases, respectively. Totally, 178 STF individuals were obtained for source-process analysis of the main shock. It was noticed that, in general, STFs from most of the stations had similarities except that those in special azimuths looked different or odd due to the mechanism difference between the main shock and the aftershocks; and in detail, the shapes of the STFs varied with azimuth. Both of them reflected the stability and reliability of the retrieved STFs. The comprehensive analysis of those STFs suggested that this event consisted of two sub-events, the total duration time was about 26 s, and on the average, the second event was about 7 s later than the first one, and the moment-rate amplitude of the first event was about 15% larger than that of the second one.展开更多
The September 21, 1999, Jiji (Chi-Chi) Mw7.6 earthquake is the strongest event occurred since 1900 in Taiwan of China. It is located in the middle segment of the western seismic zone of Taiwan. Based on several vers...The September 21, 1999, Jiji (Chi-Chi) Mw7.6 earthquake is the strongest event occurred since 1900 in Taiwan of China. It is located in the middle segment of the western seismic zone of Taiwan. Based on several versions of China earthquake catalogue this study found that a seismic gap of M≥5 earthquakes appeared, in and around the epicenter region, 24 years before and lasted up to the mainshock occurrence. This study also noticed that there existed a lager seismically quiet region of M≥4 earthquakes, which lasted for about 2.5 years before the mainshock occurrence, The spatial variation pattern of regional seismicity before the mainshock seems to match with its coseismic source rupture process. The mentioned seismicity gap and seismic quiescence might be an indication of the preparation process of the Jiji strong earthquake.展开更多
The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi,Taiwan earthquake.Much variable near-fault ground mo...The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi,Taiwan earthquake.Much variable near-fault ground motion data was collected from the rupture of Chelungpu fault during the Chi-Chi earthquake,allowing the seismic response of bridge structures subjected to these near-fault ground motions to be carefully examined.To study the near-fault ground motion effect on bridge seismic design codes,a two-level seismic design of bridge structures was developed and implemented.This design code reflects the near-fault factors in the seismic design forces.Finally,a risk assessment methodology,based on bridge vulnerability,is also developed to assist in decisions for reducing seismic risk due to failure of bridges.展开更多
To develop uniform and seismic environment-dependent design spectrum,common acceleration response spectral characteristics need to be identified.In this paper,a bi-normalized response spectrum (BNRS) is proposed,which...To develop uniform and seismic environment-dependent design spectrum,common acceleration response spectral characteristics need to be identified.In this paper,a bi-normalized response spectrum (BNRS) is proposed,which is defined as a spectrum of peak response acceleration normalized with respect to peak acceleration of the excitation plotted vs.the natural period of the system normalized with respect to the spectrum predominant period,Tp.Based on a statistical analysis of records from the 1999 Chi-Chi earthquake,the conventionally normalized response spectrum(NRS) and the BNRS are examined to account for the effects of soil conditions,epicentral distance,hanging wall and damping.It is found that compared to the NRS the BNRS is much less dependent on these factors.Finally,some simple relationships between the BNRS for a specified damping ratio and that for a damping ratio of 5%,and between the spectra predominant period and epicentral distance for different soil types are provided.展开更多
Current practice uses predictive models to extrapolate long-period response spectra based on far-field recordings in moderate and weak earthquakes. However, the spectra are not long enough and the data are often not r...Current practice uses predictive models to extrapolate long-period response spectra based on far-field recordings in moderate and weak earthquakes. However, the spectra are not long enough and the data are often not reliable, which means that the seismic design code cannot accurately define seismic design requirements for long-period structures. The near-field recordings in the main-shock of the Chi-Chi earthquake have a large signal-to-noise ratio (SNR), which makes them suitable for studying the long-period acceleration response spectrum up to 20 sec. The acceleration response spectra from 246 stations within 120 km of the causative fault are statistically analyzed in this paper. The influence of distance and site conditions on long-period response spectrum is discussed, and the shapes of the amplification spectra are compared with the standard spectra specified in the seismic design code of China. Finally, suggestions for future revisions to the code are proposed.展开更多
In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exa...In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exactly included. Parameters for numerical modeling were carefully assigned based on previous studies. Numerical results indicated that, although many simplifications are assumed, such as the fault plane is planar and all heterogeneities are neglected, distribution of slip is still consistent roughly with the results of kinematic inversion, implying that for earthquakes in which ruptures run up directly to the ground surface, the dynamic processes are controlled by geometry of the fault to a great extent. By taking the common feature inferred by various kinematic inversion studies as a restriction, we found that the critical slip-weakening distance Dc should locate in a narrow region [60 cm, 70 cm], and supershear rupture might occur during this earthquake, if the initial shear stress before the mainshock is close to the local shear strength.展开更多
Temporal changes in site effects are obtained using the HVSR(horizontal-to-vertical spectral ratio) method and strong motion records after the M w 7.6 Chi-Chi earthquake, Taiwan. Seismic data recorded between 1995 and...Temporal changes in site effects are obtained using the HVSR(horizontal-to-vertical spectral ratio) method and strong motion records after the M w 7.6 Chi-Chi earthquake, Taiwan. Seismic data recorded between 1995 and 2010 are used, comprising 3,708 data from 15 stations adjacent to the Chelungpu fault. Temporal fl uctuations are determined by analyzing the site effect variation using a time–frequency variation(TFV) diagram based on these seismic data. Stations adjacent to the fault show signifi cant disturbances in the resonance frequency at 16–26 Hz. Station TCU129 shows a 40% drop in fundamental frequency after the main shock, and a gradual return to the original state over nine years. For stations located farther from the fault zone, sudden changes in tectonic stress play a dominant role in temporal changes to the HVSR. An impact analysis of the directional factor confi rms our fi nding that the proximity of the fault to seismic stations has the most infl uence on data.展开更多
The frequency content of earthquake ground motion is very important because it affects the dynamic response of structural systems. In the paper, we use five scalar parameters (the response spectral predominant period ...The frequency content of earthquake ground motion is very important because it affects the dynamic response of structural systems. In the paper, we use five scalar parameters (the response spectral predominant period Tp, smoothed spectral predominant period To, Fourier amplitude spectral mean period Tm, equivalent pulse period Tv, and the pseudo-velocity spectral predominant period Tpv) reflecting the characteristics of frequency content of strong ground motion to examine the near-fault three-component motions during the 1999 Chi-Chi earthquake. The result indicates that the frequency content of near-fault motions at the Hanging wall is less than that at the foot wall; Tp shows a smaller value than that of To and Tm and it emerges a reverse relation of three-component motions as compared with that of To and Tm; Tv and Tpv of the near-fault motions at the north end of the rupture display a similar trend to that generated by the rupture directivity effect of strike-slip faulting. We therefore conclude that these observations are useful in the formulation of near-fault design spectra for seismic codes and in zoning studies in seismic risk.展开更多
The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions i...The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these nearfield effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods.展开更多
This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches t...This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches the importance to the variation of strength of the long-period ground motion with the magnitude, distance, and site condition. In the meantime, the near-fault long-period ground motion characteristic is analyzed. The result shows that the shape of the long-period response spectrum is mainly controlled by site condition and magnitude (the spectrum of class D+E is wider than that of class B+C, and the spectrum of larger magnitude is wider than that of smaller magni- tude), and the effect of fault distance on the shape is not evident. And near-fault long-period ground motion characteristic depends on fault activity apparently, that is to say, the long-term ground motion in the hanger is stronger than that in the footwall, and the long-term ground motion in the north is stronger than that in the south.展开更多
A major earthquake occurrence zone means a place where M ≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in C...A major earthquake occurrence zone means a place where M ≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in China is primarily associated with the NNE-directed push of the India plate, next with the westward subduction of the Pacific plate. The Chinese mainland is a grand mosaic structure of many crust blocks bounded by faults and sutures. When it is suffered from boundary stresses, deformation takes place along these faults or sutures while the block interiors remain relatively stable or intact. Since the Quaternary, for example, left slip on the Xianshuihe-Xiaojiang fault zone in southwestern China has produced a number of fault-depression basins in extensional areas during periods Q1 and Q2. In the Q3, the change of stress orientation and enhancement of tectonic movement made faults of varied trends link each other, and continued to be active till present day, producing active fanlt zones in this region. Usually major earthquakes occur at some special locations on these active fault zones. During these events, in the epicenter areas experience intensive deformation character- ized by large-amplitude rise and fall of neighboring sections, generation of horst-graben systems and dammed rivers. The studies on palaeoearthquakes suggest that major shocks of close magnitudes often repeated for several times at a same place. By comparison of the Chi-Chi, Taiwan event in 1999 and Yuza, Yunnan event in 1955, including contours of accelerations and intensities, destruction of buildings, and in contrast to the Xigeda formation in southwestern China, a sandwich model is established to account for the mechanism of deformation caused by major earthquakes. This model consists of three layers, i.e. the two walls of a fault and the ruptured zone intercalated between them. This ruptured zone is just the loci where stress is built up and released, and serves as a channel for seismic waves.展开更多
The success of the prediction of Haicheng earthquake and the failure of the prediction of Tangshan earthquake were both well known in the world. What happened, why such a strong earthquake as occurred in Haicheng had ...The success of the prediction of Haicheng earthquake and the failure of the prediction of Tangshan earthquake were both well known in the world. What happened, why such a strong earthquake as occurred in Haicheng had been predicted successfully and with a small loss of lives and property? Why a successively strong earthquake about a year later in a region not so further was failure in the imminent stage of prediction and there were so many fatalities and a great degree of property? The author addresses these points based on these true experiences including the first hand experiences leading up to, during, and following these two earthquarter. In addition, he also introduced some seimic phenomena which he had seen after Chi-chi earthquake in Taiwan.展开更多
Based on the measurement of the arrival time of maxima magnitude from band-pass filtering signals which were determined using a new Morlet wavelet multiple-filter method, we develop a method for measuring intrinsic an...Based on the measurement of the arrival time of maxima magnitude from band-pass filtering signals which were determined using a new Morlet wavelet multiple-filter method, we develop a method for measuring intrinsic and attenuative dispersion of the first cycle direct P-wave. We determine relative group delays of spectral components of direct P-waves for 984 ray paths from SML and ALS stations of the Taiwan Central Weather Bureau Seismic Network (CWBSN). Using continuous relaxation model, we deduce a new transfer function that relates intrinsic dispersion to attenuation. Based on the genetic algorithm (GA), we put forward a new inversion procedure for determining which is defined the flat part of quality factor Q(ω) spectrum, τ1 and τ2 parameters. The results indicate that ① The distribution of Om values versus epicentral distance and depth show that Qm values linearly increase with increasing of epicentral distance and depth, and Qm values is clearly independent of earthquakes magnitude; ② In the different depth ranges, Qm residual show no correlation with variations in epicentral distance. Some significant changes of Qm residual with time is likely caused by pre-seismic stress accumulation, and associated with fluid-filled higher density fractures rock volume in the source area of 1999 Chi-Chi Taiwan earthquake. We confirm that Qm residual with time anomaly appears about 2.5 years before the Chi-Chi earthquake; ③ A comparison of Qm residual for different depth range between SML and ALS stations show that the level of stress has vertical and lateral difference; ④ The area near observation station with both anomalously increasing and decreasing averaged Qm residual is likely an unstable environment for future strong earthquake occurrence. This study demonstrates the capability of direct P-waves dispersion for monitoring attenuation characteristics and its state changes of anelastic medium of the Earth at short propagation distance using seismograms recorded from very small events.展开更多
The mechanism of postseismic deformation related to strong earthquakes is important in geodynamics, and presumably afterslip or viscoelastic relaxation is responsible for the postsesimic deformation. The 1999 Chi-Chi,...The mechanism of postseismic deformation related to strong earthquakes is important in geodynamics, and presumably afterslip or viscoelastic relaxation is responsible for the postsesimic deformation. The 1999 Chi-Chi, Taiwan of China, earthquake occurred in the region where GPS observation station is most densely deployed in the world. The unprecedented GPS data provides a unique opportunity to study the physical processes of postseismic deformation. Here we assume that the interactions of viscoelastic relaxation, afterslip, fault zone collapse, poroelastic rebound, flow of underground fluids, and all these combined contribute to the surface displacements following the main shock. In order to know the essence of the postseismic deformation after the strong event, fault zone collapse, poroelastic rebound, flow of underground fluids, and so on, are represented equivalently by the variations of the focal medium properties. Therefore, the viscoelastic relaxation, afterslip, and the variations of the equivalent focal medium properties are inverted by applying the GPS temporal series measurement data with viscoelastic finite element method. Both the afterslip rate distribution along the fault and the afterslip evolution with time are obtained by means of inversion. Also, the preliminary result suggests that viscosities of the lower crust and the upper mantle in Taiwan region is 2.7×1018 and 4.2×1020 Pa·s, respectively. Moreover, the inversion results indicate that the afterslip contributing to postseismic deformation of 44.6% in 450 days after the Chi-Chi earthquake, with 34.7% caused by the viscous relaxation and 20.7% by other factors such as fault zone collapse, poroelastic rebound, and the flow of liquids.展开更多
This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan...This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan's Chi-Chi earthquake of 21 September 1999 (LT) (M_w=7.6). The transforms are used for ionospheric TEC from 01 August to 20 September 1999 (local time) using data from 13 GPS receivers. The data were collected at 22°N-26°N Lat. and 120°E-122°E Long.. Applying the NLPCA to the multi-channel total electron content records of GPS receivers, the earthquake-associated TEC anomalies were represented by large principal eigenvalues of NLPCA (〉0.5 in a normalized set) on 14 August and 17, 18, and 20 September, with allowance given for the Dst index, which was quiet for the study period. Comparisons were then made with other researchers who also found TEC anomalies on September 17, 18, and 19 associated with the Chi-Chi earthquake, which cannot be detected by PCA.Consideration is also given for reported ground level geomagnetic field activity that occurred between mid-August and late October, leading up to and including the Chi-Chi and Chia-Yi earthquakes, which are associated with the same series of faults. It is possible that Aug. 14 is representative of an earthquake-associated TEC anomaly. This is an interesting result given how much earlier than the earthquake it occurred.展开更多
基金National Key Basic Research Project (G1998040700).
文摘The M=7.6 Jiji (Chi-Chi) earthquake, Taiwan Province, on September 21, 1999 (local time) is a thrust fault style earthquake. The empirical attenuation relations of the horizontal and vertical peak ground accelerations (PGA) for the Jiji (Chi-Chi) earthquake are developed by regression method. By examining the residuals from the Jiji (Chi-Chi) earthquake-specific peak acceleration attenuation relations, it is found that there are systematic differences between PGA on the hanging-wall and footwall. The recorded peak accelerations are higher on the hanging-wall and lower on the footwall. The clear asymmetry of PGA distribution to the surface rupture trace can also be seen from the PGA contour map. These evidences indicate that the PGA attenuates faster on the hanging-wall than on the footwall. In the study of near-source strong motion, seismic hazard assessment, scenario earthquake and seismic disaster prediction, the style-of-faulting must be considered in order that the attenuation model can reflect the characteristic of ground motion in various seismic environmental regions.
基金State Natural Science Foundation of China (49904004) and IPGP of France.Contribution No. 02FE2007, Institute of Geophysics, Ch
文摘A large earthquake (Mw=7.6) occurred in Jiji (Chi-Chi), Taiwan, China on September 20, 1999, and was followed by many moderate-size shocks in the following days. Two of the largest aftershocks with the magnitudes of Mw=6.1 and Mw=6.2, respectively, were used as empirical Green's functions (EGFs) to obtain the source time functions (STFs) of the main shock from long-period waveform data of the Global Digital Seismograph Network (GDSN) including IRIS, GEOSCOPE and CDSN. For the Mw=6.1 aftershock of September 22, there were 97 pairs of phases clear enough from 78 recordings of 26 stations; for the Mw=6.2 aftershock of September 25, there were 81 pairs of phases clear enough from 72 recordings of 24 stations. For each station, 2 types of STFs were retrieved, which are called P-STF and S-STF due to being from P and S phases, respectively. Totally, 178 STF individuals were obtained for source-process analysis of the main shock. It was noticed that, in general, STFs from most of the stations had similarities except that those in special azimuths looked different or odd due to the mechanism difference between the main shock and the aftershocks; and in detail, the shapes of the STFs varied with azimuth. Both of them reflected the stability and reliability of the retrieved STFs. The comprehensive analysis of those STFs suggested that this event consisted of two sub-events, the total duration time was about 26 s, and on the average, the second event was about 7 s later than the first one, and the moment-rate amplitude of the first event was about 15% larger than that of the second one.
文摘The September 21, 1999, Jiji (Chi-Chi) Mw7.6 earthquake is the strongest event occurred since 1900 in Taiwan of China. It is located in the middle segment of the western seismic zone of Taiwan. Based on several versions of China earthquake catalogue this study found that a seismic gap of M≥5 earthquakes appeared, in and around the epicenter region, 24 years before and lasted up to the mainshock occurrence. This study also noticed that there existed a lager seismically quiet region of M≥4 earthquakes, which lasted for about 2.5 years before the mainshock occurrence, The spatial variation pattern of regional seismicity before the mainshock seems to match with its coseismic source rupture process. The mentioned seismicity gap and seismic quiescence might be an indication of the preparation process of the Jiji strong earthquake.
基金the Science Council,Chinese Taipei,under grant no.SC 90-2211-E-002-028.
文摘The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi,Taiwan earthquake.Much variable near-fault ground motion data was collected from the rupture of Chelungpu fault during the Chi-Chi earthquake,allowing the seismic response of bridge structures subjected to these near-fault ground motions to be carefully examined.To study the near-fault ground motion effect on bridge seismic design codes,a two-level seismic design of bridge structures was developed and implemented.This design code reflects the near-fault factors in the seismic design forces.Finally,a risk assessment methodology,based on bridge vulnerability,is also developed to assist in decisions for reducing seismic risk due to failure of bridges.
基金Heilongjiang Natural Science Foundation Under Project No.ZGJ03-03the Research Fund for the Doctoral Program of Higher Education of China Through Project No.20030213042
文摘To develop uniform and seismic environment-dependent design spectrum,common acceleration response spectral characteristics need to be identified.In this paper,a bi-normalized response spectrum (BNRS) is proposed,which is defined as a spectrum of peak response acceleration normalized with respect to peak acceleration of the excitation plotted vs.the natural period of the system normalized with respect to the spectrum predominant period,Tp.Based on a statistical analysis of records from the 1999 Chi-Chi earthquake,the conventionally normalized response spectrum(NRS) and the BNRS are examined to account for the effects of soil conditions,epicentral distance,hanging wall and damping.It is found that compared to the NRS the BNRS is much less dependent on these factors.Finally,some simple relationships between the BNRS for a specified damping ratio and that for a damping ratio of 5%,and between the spectra predominant period and epicentral distance for different soil types are provided.
基金National Natural Science Foundation of China Under Grant No.40374017
文摘Current practice uses predictive models to extrapolate long-period response spectra based on far-field recordings in moderate and weak earthquakes. However, the spectra are not long enough and the data are often not reliable, which means that the seismic design code cannot accurately define seismic design requirements for long-period structures. The near-field recordings in the main-shock of the Chi-Chi earthquake have a large signal-to-noise ratio (SNR), which makes them suitable for studying the long-period acceleration response spectrum up to 20 sec. The acceleration response spectra from 246 stations within 120 km of the causative fault are statistically analyzed in this paper. The influence of distance and site conditions on long-period response spectrum is discussed, and the shapes of the amplification spectra are compared with the standard spectra specified in the seismic design code of China. Finally, suggestions for future revisions to the code are proposed.
基金supported by the National Natural Science Foundation of China under grant Nos.40504004 and 40521002partially by National Basic Research Program of China under grant No.2004CB418404
文摘In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exactly included. Parameters for numerical modeling were carefully assigned based on previous studies. Numerical results indicated that, although many simplifications are assumed, such as the fault plane is planar and all heterogeneities are neglected, distribution of slip is still consistent roughly with the results of kinematic inversion, implying that for earthquakes in which ruptures run up directly to the ground surface, the dynamic processes are controlled by geometry of the fault to a great extent. By taking the common feature inferred by various kinematic inversion studies as a restriction, we found that the critical slip-weakening distance Dc should locate in a narrow region [60 cm, 70 cm], and supershear rupture might occur during this earthquake, if the initial shear stress before the mainshock is close to the local shear strength.
文摘Temporal changes in site effects are obtained using the HVSR(horizontal-to-vertical spectral ratio) method and strong motion records after the M w 7.6 Chi-Chi earthquake, Taiwan. Seismic data recorded between 1995 and 2010 are used, comprising 3,708 data from 15 stations adjacent to the Chelungpu fault. Temporal fl uctuations are determined by analyzing the site effect variation using a time–frequency variation(TFV) diagram based on these seismic data. Stations adjacent to the fault show signifi cant disturbances in the resonance frequency at 16–26 Hz. Station TCU129 shows a 40% drop in fundamental frequency after the main shock, and a gradual return to the original state over nine years. For stations located farther from the fault zone, sudden changes in tectonic stress play a dominant role in temporal changes to the HVSR. An impact analysis of the directional factor confi rms our fi nding that the proximity of the fault to seismic stations has the most infl uence on data.
基金Heilongjiang Natural Science Frundation Project (ZGJ03-03)the Researth Fund for the Doctoral Program of Higher Education of China (20030213042).
文摘The frequency content of earthquake ground motion is very important because it affects the dynamic response of structural systems. In the paper, we use five scalar parameters (the response spectral predominant period Tp, smoothed spectral predominant period To, Fourier amplitude spectral mean period Tm, equivalent pulse period Tv, and the pseudo-velocity spectral predominant period Tpv) reflecting the characteristics of frequency content of strong ground motion to examine the near-fault three-component motions during the 1999 Chi-Chi earthquake. The result indicates that the frequency content of near-fault motions at the Hanging wall is less than that at the foot wall; Tp shows a smaller value than that of To and Tm and it emerges a reverse relation of three-component motions as compared with that of To and Tm; Tv and Tpv of the near-fault motions at the north end of the rupture display a similar trend to that generated by the rupture directivity effect of strike-slip faulting. We therefore conclude that these observations are useful in the formulation of near-fault design spectra for seismic codes and in zoning studies in seismic risk.
基金National Natural Science Foundation of China Under Grant No. 50538050 and No. 50608024
文摘The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these nearfield effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods.
基金National Natural Science Foundation of China (50278090).
文摘This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches the importance to the variation of strength of the long-period ground motion with the magnitude, distance, and site condition. In the meantime, the near-fault long-period ground motion characteristic is analyzed. The result shows that the shape of the long-period response spectrum is mainly controlled by site condition and magnitude (the spectrum of class D+E is wider than that of class B+C, and the spectrum of larger magnitude is wider than that of smaller magni- tude), and the effect of fault distance on the shape is not evident. And near-fault long-period ground motion characteristic depends on fault activity apparently, that is to say, the long-term ground motion in the hanger is stronger than that in the footwall, and the long-term ground motion in the north is stronger than that in the south.
文摘A major earthquake occurrence zone means a place where M ≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in China is primarily associated with the NNE-directed push of the India plate, next with the westward subduction of the Pacific plate. The Chinese mainland is a grand mosaic structure of many crust blocks bounded by faults and sutures. When it is suffered from boundary stresses, deformation takes place along these faults or sutures while the block interiors remain relatively stable or intact. Since the Quaternary, for example, left slip on the Xianshuihe-Xiaojiang fault zone in southwestern China has produced a number of fault-depression basins in extensional areas during periods Q1 and Q2. In the Q3, the change of stress orientation and enhancement of tectonic movement made faults of varied trends link each other, and continued to be active till present day, producing active fanlt zones in this region. Usually major earthquakes occur at some special locations on these active fault zones. During these events, in the epicenter areas experience intensive deformation character- ized by large-amplitude rise and fall of neighboring sections, generation of horst-graben systems and dammed rivers. The studies on palaeoearthquakes suggest that major shocks of close magnitudes often repeated for several times at a same place. By comparison of the Chi-Chi, Taiwan event in 1999 and Yuza, Yunnan event in 1955, including contours of accelerations and intensities, destruction of buildings, and in contrast to the Xigeda formation in southwestern China, a sandwich model is established to account for the mechanism of deformation caused by major earthquakes. This model consists of three layers, i.e. the two walls of a fault and the ruptured zone intercalated between them. This ruptured zone is just the loci where stress is built up and released, and serves as a channel for seismic waves.
文摘The success of the prediction of Haicheng earthquake and the failure of the prediction of Tangshan earthquake were both well known in the world. What happened, why such a strong earthquake as occurred in Haicheng had been predicted successfully and with a small loss of lives and property? Why a successively strong earthquake about a year later in a region not so further was failure in the imminent stage of prediction and there were so many fatalities and a great degree of property? The author addresses these points based on these true experiences including the first hand experiences leading up to, during, and following these two earthquarter. In addition, he also introduced some seimic phenomena which he had seen after Chi-chi earthquake in Taiwan.
基金supported by the National Science Council of Taiwan granted NSC-94-2816-M-194-004
文摘Based on the measurement of the arrival time of maxima magnitude from band-pass filtering signals which were determined using a new Morlet wavelet multiple-filter method, we develop a method for measuring intrinsic and attenuative dispersion of the first cycle direct P-wave. We determine relative group delays of spectral components of direct P-waves for 984 ray paths from SML and ALS stations of the Taiwan Central Weather Bureau Seismic Network (CWBSN). Using continuous relaxation model, we deduce a new transfer function that relates intrinsic dispersion to attenuation. Based on the genetic algorithm (GA), we put forward a new inversion procedure for determining which is defined the flat part of quality factor Q(ω) spectrum, τ1 and τ2 parameters. The results indicate that ① The distribution of Om values versus epicentral distance and depth show that Qm values linearly increase with increasing of epicentral distance and depth, and Qm values is clearly independent of earthquakes magnitude; ② In the different depth ranges, Qm residual show no correlation with variations in epicentral distance. Some significant changes of Qm residual with time is likely caused by pre-seismic stress accumulation, and associated with fluid-filled higher density fractures rock volume in the source area of 1999 Chi-Chi Taiwan earthquake. We confirm that Qm residual with time anomaly appears about 2.5 years before the Chi-Chi earthquake; ③ A comparison of Qm residual for different depth range between SML and ALS stations show that the level of stress has vertical and lateral difference; ④ The area near observation station with both anomalously increasing and decreasing averaged Qm residual is likely an unstable environment for future strong earthquake occurrence. This study demonstrates the capability of direct P-waves dispersion for monitoring attenuation characteristics and its state changes of anelastic medium of the Earth at short propagation distance using seismograms recorded from very small events.
基金Supported by National Natural Science Foundation of China (Grant No. 40774024)Beijing Natural Science Foundation (Grant No. 8082024)State Key Laboratory of Earthquake Dynamics (Grant No. LED2008B02)
文摘The mechanism of postseismic deformation related to strong earthquakes is important in geodynamics, and presumably afterslip or viscoelastic relaxation is responsible for the postsesimic deformation. The 1999 Chi-Chi, Taiwan of China, earthquake occurred in the region where GPS observation station is most densely deployed in the world. The unprecedented GPS data provides a unique opportunity to study the physical processes of postseismic deformation. Here we assume that the interactions of viscoelastic relaxation, afterslip, fault zone collapse, poroelastic rebound, flow of underground fluids, and all these combined contribute to the surface displacements following the main shock. In order to know the essence of the postseismic deformation after the strong event, fault zone collapse, poroelastic rebound, flow of underground fluids, and so on, are represented equivalently by the variations of the focal medium properties. Therefore, the viscoelastic relaxation, afterslip, and the variations of the equivalent focal medium properties are inverted by applying the GPS temporal series measurement data with viscoelastic finite element method. Both the afterslip rate distribution along the fault and the afterslip evolution with time are obtained by means of inversion. Also, the preliminary result suggests that viscosities of the lower crust and the upper mantle in Taiwan region is 2.7×1018 and 4.2×1020 Pa·s, respectively. Moreover, the inversion results indicate that the afterslip contributing to postseismic deformation of 44.6% in 450 days after the Chi-Chi earthquake, with 34.7% caused by the viscous relaxation and 20.7% by other factors such as fault zone collapse, poroelastic rebound, and the flow of liquids.
文摘This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan's Chi-Chi earthquake of 21 September 1999 (LT) (M_w=7.6). The transforms are used for ionospheric TEC from 01 August to 20 September 1999 (local time) using data from 13 GPS receivers. The data were collected at 22°N-26°N Lat. and 120°E-122°E Long.. Applying the NLPCA to the multi-channel total electron content records of GPS receivers, the earthquake-associated TEC anomalies were represented by large principal eigenvalues of NLPCA (〉0.5 in a normalized set) on 14 August and 17, 18, and 20 September, with allowance given for the Dst index, which was quiet for the study period. Comparisons were then made with other researchers who also found TEC anomalies on September 17, 18, and 19 associated with the Chi-Chi earthquake, which cannot be detected by PCA.Consideration is also given for reported ground level geomagnetic field activity that occurred between mid-August and late October, leading up to and including the Chi-Chi and Chia-Yi earthquakes, which are associated with the same series of faults. It is possible that Aug. 14 is representative of an earthquake-associated TEC anomaly. This is an interesting result given how much earlier than the earthquake it occurred.