The simulation of the transformer transient is one of the indispensable qualifications for improving the performance of transformer protection, the key technique of the transformer's transient simulation is the tr...The simulation of the transformer transient is one of the indispensable qualifications for improving the performance of transformer protection, the key technique of the transformer's transient simulation is the treatment of ferromagnetic elements' loop. Thus the shapes of the primary hysteresis loop and each internal secondary hysteresis loop in the identical magnetism conducting are analyzed, and then it is proposed that there are some fractal characteristics in the relation between them. The fractal phenomenon of the ferromagnetic elements' hysteresis loop in the transformer's transient simulation is first brought forward, the mutuality between the ferromagnetic elements' primary hysteresis loop and its secondary hysteresis loops is revealed in mechanism by using the fractal theory. According to the iterated function system of fractal theory, the secondary hysteresis loops can be generated by the iterative calculation of the primary loop. The simulation results show the validity of this idea.展开更多
This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme ...This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme is based upon the definition of modified governing equation derived from Maxwell’s equations considered the magnetization M. This paper shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by a real coded genetic algorithm approach. The parameters identification is performed by minimizing the mean squared error between experimental and simulated magnetic field curves. The calculated results are validated by experiences performed in an SST’s frame.展开更多
Magnetic behaviors of the Ising system with bilayer honeycomb lattice(BHL) structure are studied by using the effective-field theory(EFT) with correlations. The effects of the interaction parameters on the magneti...Magnetic behaviors of the Ising system with bilayer honeycomb lattice(BHL) structure are studied by using the effective-field theory(EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point(TCP).展开更多
Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The e...Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.展开更多
This paper presents a fuzzy logic based three phase four wire four-leg shunt active power filter to suppress harmonic currents. Modified instantaneous p-q theory is adopted for calculating the compensating current. Fu...This paper presents a fuzzy logic based three phase four wire four-leg shunt active power filter to suppress harmonic currents. Modified instantaneous p-q theory is adopted for calculating the compensating current. Fuzzy-adaptive hysteresis band technique is applied for the current control to derive the switching signals for the voltage source inverter. A fuzzy logic controller is developed to control the voltage of the DC capacitor. Computer simulations are carried out on a sample power system to demonstrate the suitability of the proposed control strategy, for harmonic reduction under three different conditions namely, ideal, unbalance, unbalance and distorted source voltage conditions. The proposed control strategy is found to be effective to reduce the harmonics and compensate reactive power and neutral current and balance load currents under ideal and non-ideal source voltage conditions.展开更多
Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of ...Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of gas-water flowing law of multi-cycle relative permeability hysteresis and differential utilization in zones, the extreme utilization theory targeting at the maximum amount of stored gas, maximum injection-production capacity and maximum efficiency in space utilization is proposed to support the three-in-one evaluation method of the maximum pressure-bearing capacity of geological body, maximum well production capacity and maximum peak shaving capacity of storage space. This study realizes the full potential of gas storage(storage capacity) at maximum pressure, maximum formation-wellbore coordinate production, optimum well spacing density match with finite-time unsteady flow, and peaking shaving capacity at minimum pressure, achieving perfect balance between security and capacity. Operation in gas storages, such as Hutubi in Xinjiang, Xiangguosi in Xinan, and Shuang6 in Liaohe, proves that extreme utilization theory has promoted high quality development of gas storages in China.展开更多
This paper discusses the hysteretic behavior of beams with external elements made from auxetic materials. The damping force is modeled by using the nonlocal theory. Unlike the local models, the damping force is modele...This paper discusses the hysteretic behavior of beams with external elements made from auxetic materials. The damping force is modeled by using the nonlocal theory. Unlike the local models, the damping force is modeled as a weighted average of the velocity field over the temporal and spatial domains, determined by a kernel function based on distance measures. The hysteresis operator is continuous and it is defined in con-nection with the Euler-Bernoulli equation. The problem is solved by reducing it to a system of differential inclusions.展开更多
Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast d...Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.展开更多
By means of the effective-field theory (EFT) with correlations, the thermodynamic and magnetic quantities (such as magnetization, susceptibility, internal energy, specific heat, free energy, hysteresis curves, and ...By means of the effective-field theory (EFT) with correlations, the thermodynamic and magnetic quantities (such as magnetization, susceptibility, internal energy, specific heat, free energy, hysteresis curves, and compensation behaviors) of the spin-l/2 hexagonal Ising nanowire (HIN) system with core/shell structure have been presented. The hysteresis curves are obtained for different values of the system parameters, in both ferromagnetic and antiferromagnetic cases. It has been shown that the system only undergoes a second-order phase transition. Moreover, from the thermal variations of the total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types.展开更多
文摘The simulation of the transformer transient is one of the indispensable qualifications for improving the performance of transformer protection, the key technique of the transformer's transient simulation is the treatment of ferromagnetic elements' loop. Thus the shapes of the primary hysteresis loop and each internal secondary hysteresis loop in the identical magnetism conducting are analyzed, and then it is proposed that there are some fractal characteristics in the relation between them. The fractal phenomenon of the ferromagnetic elements' hysteresis loop in the transformer's transient simulation is first brought forward, the mutuality between the ferromagnetic elements' primary hysteresis loop and its secondary hysteresis loops is revealed in mechanism by using the fractal theory. According to the iterated function system of fractal theory, the secondary hysteresis loops can be generated by the iterative calculation of the primary loop. The simulation results show the validity of this idea.
文摘This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme is based upon the definition of modified governing equation derived from Maxwell’s equations considered the magnetization M. This paper shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by a real coded genetic algorithm approach. The parameters identification is performed by minimizing the mean squared error between experimental and simulated magnetic field curves. The calculated results are validated by experiences performed in an SST’s frame.
基金supported by the High Technology Research and Development Program of Jilin(20130204021GX)the Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)+2 种基金the National Natural Science Foundation of China(61520106008,U1564207,61503149)the Education Department of Jilin Province of China(2016430)the Graduate Innovation Fund of Jilin University(2016030)
文摘Magnetic behaviors of the Ising system with bilayer honeycomb lattice(BHL) structure are studied by using the effective-field theory(EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point(TCP).
文摘Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.
文摘This paper presents a fuzzy logic based three phase four wire four-leg shunt active power filter to suppress harmonic currents. Modified instantaneous p-q theory is adopted for calculating the compensating current. Fuzzy-adaptive hysteresis band technique is applied for the current control to derive the switching signals for the voltage source inverter. A fuzzy logic controller is developed to control the voltage of the DC capacitor. Computer simulations are carried out on a sample power system to demonstrate the suitability of the proposed control strategy, for harmonic reduction under three different conditions namely, ideal, unbalance, unbalance and distorted source voltage conditions. The proposed control strategy is found to be effective to reduce the harmonics and compensate reactive power and neutral current and balance load currents under ideal and non-ideal source voltage conditions.
基金Supported by the PetroChina Scientific Research and Technology Development Project (2022DJ83)。
文摘Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of gas-water flowing law of multi-cycle relative permeability hysteresis and differential utilization in zones, the extreme utilization theory targeting at the maximum amount of stored gas, maximum injection-production capacity and maximum efficiency in space utilization is proposed to support the three-in-one evaluation method of the maximum pressure-bearing capacity of geological body, maximum well production capacity and maximum peak shaving capacity of storage space. This study realizes the full potential of gas storage(storage capacity) at maximum pressure, maximum formation-wellbore coordinate production, optimum well spacing density match with finite-time unsteady flow, and peaking shaving capacity at minimum pressure, achieving perfect balance between security and capacity. Operation in gas storages, such as Hutubi in Xinjiang, Xiangguosi in Xinan, and Shuang6 in Liaohe, proves that extreme utilization theory has promoted high quality development of gas storages in China.
文摘This paper discusses the hysteretic behavior of beams with external elements made from auxetic materials. The damping force is modeled by using the nonlocal theory. Unlike the local models, the damping force is modeled as a weighted average of the velocity field over the temporal and spatial domains, determined by a kernel function based on distance measures. The hysteresis operator is continuous and it is defined in con-nection with the Euler-Bernoulli equation. The problem is solved by reducing it to a system of differential inclusions.
基金funded by Geran Galakan Penyelidik Muda GGPM-2020-004 Universiti Kebangsaan Malaysia.
文摘Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.
文摘By means of the effective-field theory (EFT) with correlations, the thermodynamic and magnetic quantities (such as magnetization, susceptibility, internal energy, specific heat, free energy, hysteresis curves, and compensation behaviors) of the spin-l/2 hexagonal Ising nanowire (HIN) system with core/shell structure have been presented. The hysteresis curves are obtained for different values of the system parameters, in both ferromagnetic and antiferromagnetic cases. It has been shown that the system only undergoes a second-order phase transition. Moreover, from the thermal variations of the total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types.