Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions be...Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.展开更多
2N line-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation can be presented by resorting tothe Hirota bilinear method.In this paper,N periodic-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation...2N line-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation can be presented by resorting tothe Hirota bilinear method.In this paper,N periodic-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equationare obtained from the 2N line-soliton solutions by selecting the parameters into conjugated complex parameters in pairs.展开更多
Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
By using the (G'/G)-expansion method and the variable separation method, a new family of exact solutions of the (3+1)-dimensional Jimbo-Miwa system is obtained. Based on the derived solitary wave solutions, we o...By using the (G'/G)-expansion method and the variable separation method, a new family of exact solutions of the (3+1)-dimensional Jimbo-Miwa system is obtained. Based on the derived solitary wave solutions, we obtain some special localized excitations and study the interactions between two solitary waves of the system.展开更多
文摘Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
基金supported by the State Key Basic Research Program of China under Grant No.2004CB318000National Natural Science Foundation of China under Grant No.10771072
文摘2N line-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation can be presented by resorting tothe Hirota bilinear method.In this paper,N periodic-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equationare obtained from the 2N line-soliton solutions by selecting the parameters into conjugated complex parameters in pairs.
文摘Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
基金Project supported by the Scientific Research Foundation of Lishui University, China (Grant No. KZ201110)
文摘By using the (G'/G)-expansion method and the variable separation method, a new family of exact solutions of the (3+1)-dimensional Jimbo-Miwa system is obtained. Based on the derived solitary wave solutions, we obtain some special localized excitations and study the interactions between two solitary waves of the system.
基金The National Natural Science Foundation of China(11701134)The National Natural Science Foundation of Shandong Province,China(ZR2017JL008)The Science and Technology Plan Project of the Educational Department of Shandong Province,China(J16LI12,J15LI54)