BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a prevalent malignancy with a high morbidity and mortality rate.TMEM100 has been shown to be suppressor gene in a variety of tumors,but there are no reports on the...BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a prevalent malignancy with a high morbidity and mortality rate.TMEM100 has been shown to be suppressor gene in a variety of tumors,but there are no reports on the role of TMEM100 in esophageal cancer(EC).AIM To investigate epigenetic regulation of TMEM100 expression in ESCC and the effect of TMEM100 on ESCC proliferation and invasion.METHODS Firstly,we found the expression of TMEM100 in EC through The Cancer Genome Atlas database.The correlation between TMEM100 gene expression and the survival of patients with EC was further confirmed through Kaplan-Meier analysis.We then added the demethylating agent 5-AZA to ESCC cell lines to explore the regulation of TMEM100 expression by epigenetic modification.To observe the effect of TMEM100 expression on tumor proliferation and invasion by overexpressing TMEM100.Finally,we performed gene set enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Annotation System database to look for pathways that might be affected by TMEM100 and verified the effect of TMEM100 expression on the mitogen-activated protein kinases(MAPK)pathway.RESULTS In the present study,by bioinformatic analysis we found that TMEM100 was lowly expressed in EC patients compared to normal subjects.Kaplan-meier survival analysis showed that low expression of TMEM100 was associated with poor prognosis in patients with EC.Then,we found that the demethylating agent 5-AZA resulted in increased expression of TMEM100 in ESCC cells[quantitative real-time PCR(qRT-PCR)and western blotting].Subsequently,we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells(qRT-PCR and western blotting).Overexpression of TMEM100 also inhibited proliferation,invasion and migration of ESCC cells(cell counting kit-8 and clone formation assays).Next,by enrichment analysis,we found that the gene set was significantly enriched in the MAPK signaling pathway.The involvement of TMEM100 in the regulation of MAPK signaling pathway in ESCC cell was subsequently verified by western blotting.CONCLUSION TMEM100 is a suppressor gene in ESCC,and its low expression may lead to aberrant activation of the MAPK pathway.Promoter methylation may play a key role in regulating TMEM100 expression.展开更多
Background:S100A8 is a member of the S100 protein family and plays a pivotal role in regulating inflammation and tumor progression.This study aimed to comprehensively assess the expression patterns and functional role...Background:S100A8 is a member of the S100 protein family and plays a pivotal role in regulating inflammation and tumor progression.This study aimed to comprehensively assess the expression patterns and functional roles of S100A8 in glioma progression.Methods:Glioma tissues were collected from 98 patients who underwent surgical treatment at Fudan University Shanghai Cancer Center.S100A8 expression in glioma tissues was analyzed using immunohistochemistry(IHC)to establish its correlation with clinicopathological features in patients.The expression and prognostic effect of S100A8 in glioma were analyzed using TCGA and CGGA public databases.Then,we investigated the role of S100A8 in glioma through a series of in vivo and in vitro experiments including Transwell,wound healing,CCK8,and intracranial tumor models.Subsequently,bioinformatics analysis,single-cell sequencing and coimmunopre-cipitation(Co-IP)were used to explore the underlying mechanism.Results:S100A8 was upregulated in gliomas compared to paracancerous tissues,and this phenotype was sig-nificantly correlated with poor prognosis.Subgroup analysis showed that S100A8 expression was higher in the high-grade glioma(HGG)group than that in the low-grade glioma(LGG)group.S100A8 overexpression in glioma cell lines promoted cell proliferation,migration and invasion,while silencing S100A8 reversed these effects.In vivo experiments showed that S100A8 knockdown can significantly reduce the tumor burden of glioma cells.Notably,S100A8 was observed to stimulate microglial M2 polarization by interacting with TLR4,which subse-quently induced NF-𝜅B signaling and IL-10 secretion within the tumor microenvironment.Conclusions:S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma.It might represent a therapeutic target for further basic research or clinical management of glioma.展开更多
The chemisorption and direct decomposition of NO on Rh(100) and Rh(111) surfaces were studied by the density functional theory(DFT) with Dmol3 program.The calculation results show that for the Rh(100)surface,t...The chemisorption and direct decomposition of NO on Rh(100) and Rh(111) surfaces were studied by the density functional theory(DFT) with Dmol3 program.The calculation results show that for the Rh(100)surface,the bridge sites are found to be the preferred adsorption site,but for the Rh(111) surface,the three fold hollow(hcp) sites are found to be the most stable one;the transition states were confirmed for the direct decomposition of NO on Rh(100) and Rh(111) surfaces by successful transition state search,and the activation energy are 161.91 kJ/mol for Rh(100) and 183.72 kJ/mol for Rh(111),respectively.展开更多
文摘BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a prevalent malignancy with a high morbidity and mortality rate.TMEM100 has been shown to be suppressor gene in a variety of tumors,but there are no reports on the role of TMEM100 in esophageal cancer(EC).AIM To investigate epigenetic regulation of TMEM100 expression in ESCC and the effect of TMEM100 on ESCC proliferation and invasion.METHODS Firstly,we found the expression of TMEM100 in EC through The Cancer Genome Atlas database.The correlation between TMEM100 gene expression and the survival of patients with EC was further confirmed through Kaplan-Meier analysis.We then added the demethylating agent 5-AZA to ESCC cell lines to explore the regulation of TMEM100 expression by epigenetic modification.To observe the effect of TMEM100 expression on tumor proliferation and invasion by overexpressing TMEM100.Finally,we performed gene set enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Annotation System database to look for pathways that might be affected by TMEM100 and verified the effect of TMEM100 expression on the mitogen-activated protein kinases(MAPK)pathway.RESULTS In the present study,by bioinformatic analysis we found that TMEM100 was lowly expressed in EC patients compared to normal subjects.Kaplan-meier survival analysis showed that low expression of TMEM100 was associated with poor prognosis in patients with EC.Then,we found that the demethylating agent 5-AZA resulted in increased expression of TMEM100 in ESCC cells[quantitative real-time PCR(qRT-PCR)and western blotting].Subsequently,we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells(qRT-PCR and western blotting).Overexpression of TMEM100 also inhibited proliferation,invasion and migration of ESCC cells(cell counting kit-8 and clone formation assays).Next,by enrichment analysis,we found that the gene set was significantly enriched in the MAPK signaling pathway.The involvement of TMEM100 in the regulation of MAPK signaling pathway in ESCC cell was subsequently verified by western blotting.CONCLUSION TMEM100 is a suppressor gene in ESCC,and its low expression may lead to aberrant activation of the MAPK pathway.Promoter methylation may play a key role in regulating TMEM100 expression.
基金supported by the National Natural Science Foundation of China(grant numbers:82103429 and 82173177).
文摘Background:S100A8 is a member of the S100 protein family and plays a pivotal role in regulating inflammation and tumor progression.This study aimed to comprehensively assess the expression patterns and functional roles of S100A8 in glioma progression.Methods:Glioma tissues were collected from 98 patients who underwent surgical treatment at Fudan University Shanghai Cancer Center.S100A8 expression in glioma tissues was analyzed using immunohistochemistry(IHC)to establish its correlation with clinicopathological features in patients.The expression and prognostic effect of S100A8 in glioma were analyzed using TCGA and CGGA public databases.Then,we investigated the role of S100A8 in glioma through a series of in vivo and in vitro experiments including Transwell,wound healing,CCK8,and intracranial tumor models.Subsequently,bioinformatics analysis,single-cell sequencing and coimmunopre-cipitation(Co-IP)were used to explore the underlying mechanism.Results:S100A8 was upregulated in gliomas compared to paracancerous tissues,and this phenotype was sig-nificantly correlated with poor prognosis.Subgroup analysis showed that S100A8 expression was higher in the high-grade glioma(HGG)group than that in the low-grade glioma(LGG)group.S100A8 overexpression in glioma cell lines promoted cell proliferation,migration and invasion,while silencing S100A8 reversed these effects.In vivo experiments showed that S100A8 knockdown can significantly reduce the tumor burden of glioma cells.Notably,S100A8 was observed to stimulate microglial M2 polarization by interacting with TLR4,which subse-quently induced NF-𝜅B signaling and IL-10 secretion within the tumor microenvironment.Conclusions:S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma.It might represent a therapeutic target for further basic research or clinical management of glioma.
文摘The chemisorption and direct decomposition of NO on Rh(100) and Rh(111) surfaces were studied by the density functional theory(DFT) with Dmol3 program.The calculation results show that for the Rh(100)surface,the bridge sites are found to be the preferred adsorption site,but for the Rh(111) surface,the three fold hollow(hcp) sites are found to be the most stable one;the transition states were confirmed for the direct decomposition of NO on Rh(100) and Rh(111) surfaces by successful transition state search,and the activation energy are 161.91 kJ/mol for Rh(100) and 183.72 kJ/mol for Rh(111),respectively.