An isochron age of 282±20 (95% conf. limit) Ma of the sulfide ores in the Huangshandong Cu-Ni sulfide deposit, the East Tianshan Mountains has been obtained through Re-Os isotopic measurement. The age implies tha...An isochron age of 282±20 (95% conf. limit) Ma of the sulfide ores in the Huangshandong Cu-Ni sulfide deposit, the East Tianshan Mountains has been obtained through Re-Os isotopic measurement. The age implies that the Cu-Ni sulfide deposit and other related deposits in the same area occurred in a Permian extensional environment of post-collision instead of Devonian-Early Carboniferous ophiolite-related oceanic or island arc environments inferred before. It shares the same ages with the orogenic and epithermal gold deposit systems in the same area. An initial 187Os/188Os ratio of 0.25±0.04 (1σ) and a γos value of 99 on average display the participation of large quantities of crustal components into the rock-forming and ore-forming system during mineralization and magmatic emplacement.展开更多
Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Hu...Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Huangshandong, Tulaergen, Hulu, Xiangshan were have been consecutively discovered in this belt (Duan Xingxing et al., 2016). The new discovery of the Lubei Cu-Ni sulfide deposit in recent years, which locates in the west of Jueluotage belt, has great significance to the westward extension of the East Tianshan Cu-Ni metallogenic belt. To determine whether the mineralization age of the Lubei Cu-Ni sulfide deposit is consistent with other typical deposits, this study conducted zircon U-Pb geochronology on the diorite from the Lubei Cu-Ni sulfide deposit in order to provide new information for further exploring direction of Cu-Ni prospecting in East Tianshan.展开更多
The Jinchuan Ni-Cu sulfide deposits,NW China,are hosted in small ultramafic intrusions that were emplaced into Paleoproterozoic metamorphic rocks. The ultramafic intrusions were previously thought to be the segments o...The Jinchuan Ni-Cu sulfide deposits,NW China,are hosted in small ultramafic intrusions that were emplaced into Paleoproterozoic metamorphic rocks. The ultramafic intrusions were previously thought to be the segments of a single elongate intrusion that was dismembered by late faults into eastern and western portions,each of which have distinct stratigraphic sequences.展开更多
The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of...The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.展开更多
The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and ...The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.展开更多
On the basis of the study on the REE geochemistry of the ore minerals and host rocks of the Kalatongke Cu-Ni deposit, Xinjiang, it is indicated that the major ore minerals, sulfides, were sourced from the host mafic-u...On the basis of the study on the REE geochemistry of the ore minerals and host rocks of the Kalatongke Cu-Ni deposit, Xinjiang, it is indicated that the major ore minerals, sulfides, were sourced from the host mafic-ultramafic magma. Characterized by low REE content of sulfide, such a Cu-Ni sulfide deposit occurring in the orogen is obviously different from that on the margin of the craton. Because the mafic-ultramafic rocks from the Cu-Ni sulfide deposit occurring in the orogen is water-rich and the REEs of some sulfides show a particular 'multiple-bending' pattern, which suggests coexistence of multiple liquid phases (fluid and melt), the sulfide melt possibly contains a great deal of hydrothermal fluids and increasingly developed gases and liquid-rich ore-forming fluids after the main metallogenic epoch (magmatic segregation stage).展开更多
Superlarge sulfide deposits are hosted in the Jinchuan ultramafic intrusion. The central and west segments of the intrusion may represent magma conduits along which petrological phases are symmetrical zones. The ores ...Superlarge sulfide deposits are hosted in the Jinchuan ultramafic intrusion. The central and west segments of the intrusion may represent magma conduits along which petrological phases are symmetrical zones. The ores are associated with the dunite and lherzolite in the central part of the intrusive body. The east segment of the intrusion is more gently titled, showing vertical zonation of rock phases with ores localized at the base. Cumulate texture is common in various types of rock. Petrological and geochemical studies indicate that flow differentiation may have dominated in the central and west segments while gravity differentiation was important in the east. The original magma was believed to be tholeiitic in composition. The massive ores were the result of filter pressing. Ore metals were supplied for the most part by progressive influx of new magmas. The segregation of sulfide liquid from the silicate melt was controlled to a large extent by volatiles. Necessary conditions for the formation of such superlarge sulfide deposits are discussed.展开更多
The interfacial tension of the matte/halo-Norilsk basalt slag systems of FeS-Cu2S-Ni3S2 and FeO-FeS were investigated using the sessile drop technique. The results indicate that interfacial tension decreases with incr...The interfacial tension of the matte/halo-Norilsk basalt slag systems of FeS-Cu2S-Ni3S2 and FeO-FeS were investigated using the sessile drop technique. The results indicate that interfacial tension decreases with increasing copper and nickel contents in the matte of FeS-Cu2S-Ni3S2 system while it increases with increasing oxygen content in the matte of FeO-FeS system. It is inferred from these results that two conditions are critical for the formation of giant Cu-Ni sulfide deposits. One is that ma-fic-ultramafic parent magma of sulfide deposits should be rich in copper and nickel where due to the low interfacial tension, it is difficult to form sulfide droplet in the early stage of magma evolution. In other words, sulfide liquid conglomeration occurs more difficultly. The other condition is that the magma emplacement should be shallow; and a lot of faults occur in the magma emplacement field. Since oxygen content is high in the environment, interfacial tension is high, which helps sulfide liquid conglomeration and consequently Cu-Ni sulfide deposits form.展开更多
基金the National Natural Science Foundation of China(No.40172021)the Major State Basic Research Program of the People’s Republic of China(No.G1999043211)the New Round Geological Survey Project (DKD9902001,2001BA609A-07-04).
文摘An isochron age of 282±20 (95% conf. limit) Ma of the sulfide ores in the Huangshandong Cu-Ni sulfide deposit, the East Tianshan Mountains has been obtained through Re-Os isotopic measurement. The age implies that the Cu-Ni sulfide deposit and other related deposits in the same area occurred in a Permian extensional environment of post-collision instead of Devonian-Early Carboniferous ophiolite-related oceanic or island arc environments inferred before. It shares the same ages with the orogenic and epithermal gold deposit systems in the same area. An initial 187Os/188Os ratio of 0.25±0.04 (1σ) and a γos value of 99 on average display the participation of large quantities of crustal components into the rock-forming and ore-forming system during mineralization and magmatic emplacement.
基金supported by the Geological Exploration Foundation Project of Xinjiang(grants No.Y15-1-LQ05 and No.T15-2-LQ13)Special Project of National Geological Mineral Investigation and Evaluation(grant No.DD20160345-04)
文摘Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Huangshandong, Tulaergen, Hulu, Xiangshan were have been consecutively discovered in this belt (Duan Xingxing et al., 2016). The new discovery of the Lubei Cu-Ni sulfide deposit in recent years, which locates in the west of Jueluotage belt, has great significance to the westward extension of the East Tianshan Cu-Ni metallogenic belt. To determine whether the mineralization age of the Lubei Cu-Ni sulfide deposit is consistent with other typical deposits, this study conducted zircon U-Pb geochronology on the diorite from the Lubei Cu-Ni sulfide deposit in order to provide new information for further exploring direction of Cu-Ni prospecting in East Tianshan.
文摘The Jinchuan Ni-Cu sulfide deposits,NW China,are hosted in small ultramafic intrusions that were emplaced into Paleoproterozoic metamorphic rocks. The ultramafic intrusions were previously thought to be the segments of a single elongate intrusion that was dismembered by late faults into eastern and western portions,each of which have distinct stratigraphic sequences.
文摘The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.
基金supported by the National Science and Technology Support Project of China (No.2006BAB01B08)
文摘The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.
基金the National Key Basic Research Program of China(No.2001CB409806).
文摘On the basis of the study on the REE geochemistry of the ore minerals and host rocks of the Kalatongke Cu-Ni deposit, Xinjiang, it is indicated that the major ore minerals, sulfides, were sourced from the host mafic-ultramafic magma. Characterized by low REE content of sulfide, such a Cu-Ni sulfide deposit occurring in the orogen is obviously different from that on the margin of the craton. Because the mafic-ultramafic rocks from the Cu-Ni sulfide deposit occurring in the orogen is water-rich and the REEs of some sulfides show a particular 'multiple-bending' pattern, which suggests coexistence of multiple liquid phases (fluid and melt), the sulfide melt possibly contains a great deal of hydrothermal fluids and increasingly developed gases and liquid-rich ore-forming fluids after the main metallogenic epoch (magmatic segregation stage).
文摘Superlarge sulfide deposits are hosted in the Jinchuan ultramafic intrusion. The central and west segments of the intrusion may represent magma conduits along which petrological phases are symmetrical zones. The ores are associated with the dunite and lherzolite in the central part of the intrusive body. The east segment of the intrusion is more gently titled, showing vertical zonation of rock phases with ores localized at the base. Cumulate texture is common in various types of rock. Petrological and geochemical studies indicate that flow differentiation may have dominated in the central and west segments while gravity differentiation was important in the east. The original magma was believed to be tholeiitic in composition. The massive ores were the result of filter pressing. Ore metals were supplied for the most part by progressive influx of new magmas. The segregation of sulfide liquid from the silicate melt was controlled to a large extent by volatiles. Necessary conditions for the formation of such superlarge sulfide deposits are discussed.
基金the National Natural Science Foundation of China(Grant Nos.40472051 , 40234048) the Ministry of Science and Technology of China(Grant No.3-3-00-1).
文摘The interfacial tension of the matte/halo-Norilsk basalt slag systems of FeS-Cu2S-Ni3S2 and FeO-FeS were investigated using the sessile drop technique. The results indicate that interfacial tension decreases with increasing copper and nickel contents in the matte of FeS-Cu2S-Ni3S2 system while it increases with increasing oxygen content in the matte of FeO-FeS system. It is inferred from these results that two conditions are critical for the formation of giant Cu-Ni sulfide deposits. One is that ma-fic-ultramafic parent magma of sulfide deposits should be rich in copper and nickel where due to the low interfacial tension, it is difficult to form sulfide droplet in the early stage of magma evolution. In other words, sulfide liquid conglomeration occurs more difficultly. The other condition is that the magma emplacement should be shallow; and a lot of faults occur in the magma emplacement field. Since oxygen content is high in the environment, interfacial tension is high, which helps sulfide liquid conglomeration and consequently Cu-Ni sulfide deposits form.