Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Her...Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.展开更多
Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as ...Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.展开更多
Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic ...Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.展开更多
Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ...Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.展开更多
Hepatocellular carcinoma (HCC) is one of the most common tumor types and remains a major clinical challenge. Increasing evidence has revealed that mitophagy inhibitors can enhance the effect of chemotherapy on HCC. Ho...Hepatocellular carcinoma (HCC) is one of the most common tumor types and remains a major clinical challenge. Increasing evidence has revealed that mitophagy inhibitors can enhance the effect of chemotherapy on HCC. However, few mitophagy inhibitors have been approved for clinical use in humans. Pyrimethamine (Pyr) is used to treat infections caused by protozoan parasites. Recent studies have reported that Pyr may be beneficial in the treatment of various tumors. However, its mechanism of action is still not clearly defined. Here, we found that blocking mitophagy sensitized cells to Pyr-induced apoptosis. Mechanistically, Pyr potently induced the accumulation of autophagosomes by inhibiting autophagosome-lysosome fusion in human HCC cells. In vitro and in vivo studies revealed that Pyr blocked autophagosome-lysosome fusion by upregulating BNIP3 to inhibit synaptosomal-associated protein 29 (SNAP29)-vesicle-associated membrane protein 8 (VAMP8) interaction. Moreover, Pyr acted synergistically with sorafenib (Sora) to induce apoptosis and inhibit HCC proliferation in vitro and in vivo. Pyr enhances the sensitivity of HCC cells to Sora, a common chemotherapeutic, by inhibiting mitophagy. Thus, these results provide new insights into the mechanism of action of Pyr and imply that Pyr could potentially be further developed as a novel mitophagy inhibitor. Notably, Pyr and Sora combination therapy could be a promising treatment for malignant HCC.展开更多
Photocatalysis has emerged as an effective approach to sustainably convert biomass into value-added products.CoSe_(2)is a promising nonprecious,efficient cocatalyst for photooxidation,which can facilitate the separati...Photocatalysis has emerged as an effective approach to sustainably convert biomass into value-added products.CoSe_(2)is a promising nonprecious,efficient cocatalyst for photooxidation,which can facilitate the separation of photogenerated electron–holes,increase the reaction rates,and enhance photocatalytic efficiency.In this work,we synthesized a stable and efficient photocatalysis system of CoSe_(2)/g-C_(3)N_(4)through attaching CoSe_(2)on g-C_(3)N_(4)sheets,with a yield of 50.12%for the selective photooxidation of xylose to xylonic acid.Under light illumination,the photogenerated electrons were prone to migrating from g-C_(3)N_(4)to CoSe_(2)due to the higher work function of CoSe_(2),resulting in the accelerated separation of photogenerated electron–holes and the promoted photooxidation.Herein,this study reveals the unique function of CoSe_(2),which can significantly promote oxygen adsorption,work as an electron sink and accelerate the generation of ·O_(2)^(-),thereby improving the selectivity toward xylonic acid over other by-products.This work provides useful insights into the design of selective photocatalysts by engineering g-C_(3)N_(4)for biomass high-value utilization.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact mo...BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.展开更多
Mechanoluminescent(ML)materials,which have the ability to convert mechanical energy to optical energy,have found huge promising applications such as in stress imaging and anti-counterfeiting.However,the main reported ...Mechanoluminescent(ML)materials,which have the ability to convert mechanical energy to optical energy,have found huge promising applications such as in stress imaging and anti-counterfeiting.However,the main reported ML phosphors are based on trap-related ones,thus hindering the practical applications due to the requirement of complex light pre-irradiation process.Here,a self-recoverable near infrared(NIR)ML material of Lali-xO:xCr^(3+)(x=0.2%,0.4%,0.6%,0.8%,1.0%,and 1.2%)has been developed.Based on the preheating method and corresponding ML performance analysis,the influences of residual carriers are eliminated and the detailed dynamic luminescence process analysis is realized.Systematic experiments are conducted to reveal the origin of the ML emissions,demonstrating that ML is dictated more by the non-centrosymmetric piezoelectric crystal characteristic.In general,this work has provided significant references for exploring more efficient NIR ML materials,which may provide potential applications in anti-counterfeiting and bio-stress sensing.展开更多
The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was establishe...The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.展开更多
With organ transplantation facing many dilemmas,tissue and organ regeneration as an alternative has bright prospects.In regenerative medicine,Three-dimensional(3D)printing technology and stem cells has been widely app...With organ transplantation facing many dilemmas,tissue and organ regeneration as an alternative has bright prospects.In regenerative medicine,Three-dimensional(3D)printing technology and stem cells has been widely applied to the treatment of diseases related to tissue or organ replacement in dentistry,respectively.However,there are very few studies on the combination of the two,and even fewer clinical studies have been reported in dentistry.In this review,the current oral tissue engineering in vivo and in vitro based on 3D printing and stem cell technology will be summarized,and the discussion on the development prospects of this research direction will be given.Besides,the working principles and advantages&disadvantages of several types of 3D printers,as well as the mechanism of stem cells in tissue engineering will be elucidated.This review provides clinicians and researchers with the current state of research and trends in the combination of stem cells and 3D printing technology to treat oral-related diseases.In the future,3D bioprinters are poised for ongoing innovation with the advancement of relevant technologies,catalyzing an increase in clinical studies focused on treating oral diseases using stem cells and 3D scaffolds.Consequently,these developments will further advance the field of oral tissue engineering.展开更多
BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicate...BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2(LILRB2)in GC.We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands,angiopoietin-like protein 2(ANGPTL2)and human leukocyte antigen-G(HLA-G),contributing to immunosuppression.AIM To investigate the relationship between CSF3/CSF3R and LILRB2,as well as its ligands ANGPTL2 and HLA-G,in GC.METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed,stratifying patients by CSF3R expression.Differentially expressed genes and immune checkpoints were evaluated.Immunohistochemistry(IHC)was performed on GC tissues.Correlation analyses of CSF3R,LILRB2,ANGPTL2,and HLA-G were conducted using The Cancer Genome Atlas data and IHC results.GC cells were treated with CSF3,and expression levels of LILRB2,ANGPTL2,and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting.RESULTS Among 122 upregulated genes in high CSF3R expression groups,LILRB2 showed the most significant increase.IHC results indicated high expression of LILRB2(63.0%),ANGPTL2(56.5%),and HLA-G(73.9%)in GC tissues.Strong positive correlations existed between CSF3R and LILRB2,ANGPTL2,and HLA-G mRNA levels(P<0.001).IHC confirmed positive correlations between CSF3R and LILRB2(P<0.001),and HLA-G(P=0.010),but not ANGPTL2(P>0.05).CSF3 increased LILRB2,ANGPTL2,and HLA-G expression in GC cells.Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression,impacting CSF3’s regulatory effects.CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands,with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.展开更多
AIM:To explore the neuroprotective effects of high mobility group box 2(HMGB2)knockdown on retinal ganglion cells(RGCs)in the retinal ischemia-reperfusion injury(RIRI).METHODS:Oxygen-glucose deprivation(OGD)-injured R...AIM:To explore the neuroprotective effects of high mobility group box 2(HMGB2)knockdown on retinal ganglion cells(RGCs)in the retinal ischemia-reperfusion injury(RIRI).METHODS:Oxygen-glucose deprivation(OGD)-injured RGCs from postnatal three-day C57BL/6 mice pups and high intraocular pressure(IOP)-induced RIRI mice were used as cellular and animal models of RIRI.The expression of HMGB2 in the retina of RIRI mice and OGD-injured RGCs was detected through reverse transcription-polymerase chain reaction(RT-qPCR)and Western blotting.The effects of HMGB2 silencing on the morphological changes,RGCs survival,and cell apoptosis in mouse retinal tissues were observed through H&E staining,immunofluorescence staining with RNA-binding protein with multiple splicing(RBPMS)antibody,and TUNEL staining,respectively.RGC viability and apoptosis were examined by CCK-8 and flow cytometry assays.The levels of proteins associated with NOD-like receptor thermal protein domain associated protein 3(NLRP3)-mediated pyroptosis[NLRP3,Caspase-1,GSDMD-N,interleukin(IL)-1β,IL-18]in vivo and in vitro were measured by Western blotting.RESULTS:HMGB2 protein and NLRP3 were upregulated in the retina of RIRI mice and OGD-injured RGCs(P<0.001).The retina was edematous,accompanied by disorganized cell arrangement and decreased thickness of all layers,and obvious vacuoles in ganglion cell layer.HMGB2 silencing alleviated the reduction in total retinal thickness and the severity of retinal tissue damage as well as suppressed RGC loss and retinal cell apoptosis in RIRI mice.OGD-induced RGC apoptosis was ameliorated after downregulation of HMGB2 in vitro.Intravitreal injection of the AAV-sh-HMGB2 and si-HMGB2 resulted in significantly decrease of NLRP3,Caspase-1,GSDMD-N,IL-1β,and IL-18 protein levels in the retinal tissues of RIRI mice and OGD-injured RGCs,respectively(all P<0.001).CONCLUSION:HMGB2 knockdown protects against RGC apoptosis and pyroptosis after RIRI through suppressing NLRP3 inflammasome activation.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes criti...BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.展开更多
Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from t...Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.展开更多
基金supported by the National Key Research and Development Program of China,No.2022YFC2402701(to WC)Key International(Regional)Joint Research Program of the National Natural Science Foundation of China,No.81820108009(to SY)+5 种基金the National Natural Science Foundation of China,Nos.81970890(to WC)and 82371148(to WG)Fujian Provincial Healthcare Young and Middle-aged Backbone Talent Training Project,No.2023GGA035(to XC)Spring City Planthe High-level Talent Promotion and Training Project of Kunming,No.2022SCP001(to SY)the Natural Science Foundation of Hainan Province of China,No.824MS052(to XS)the Sixth Medical Center of Chinese PLA General Hospital Innovation Cultivation,No.CXPY202116(to LX)。
文摘Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.
文摘目的探讨中晚期孕妇血清NOV/CCN3水平变化,并分析其与妊娠期糖尿病(gestational diabetes mellitus,GDM)及妊娠结局的关系。方法根据口服葡萄糖耐量实验(oral glucose tolerance test,OGTT)结果,将252例妊娠女性分为GDM组与对照组。根据妊娠前体质量指数水平及妊娠结局情况将GDM组进行分组。收集所有研究对象临床资料,比较组间一般资料、生化指标及NOV/CCN3水平的差异。结果GDM组血清NOV/CCN3水平高于对照组(P<0.001)。Spearman相关分析结果表明血清NOV/CCN3与妊娠前体质量、妊娠前体质量指数、胰岛素抵抗指数、总胆固醇呈正相关,与胰岛素敏感指数呈负相关(P<0.05)。logistic回归分析结果表明,NOV/CCN3是GDM发生的独立危险因素[OR=1.097,95%CI(1.020~1.179),P=0.013],且是GDM患者发生不良妊娠结局的独立危险因素[OR=1.032,95%CI(1.020~1.045),P<0.001],ROC分析结果显示曲线下面积(area under the curve,AUC)分别为0.840、0.784(P<0.05)。结论中晚期孕妇血清NOV/CCN3水平与肥胖、胰岛素抵抗及糖脂代谢相关,参与GDM发生发展,为评估中晚期孕妇发生GDM及GDM患者妊娠结局提供新的思路。
基金supported by the National Natural Science Foundation of China,Nos.81800919(to YX),82171140(to PW)the International Cooperation and Exchange of the National Natural Science Foundation of China,Nos.82020108008(to HS),81720108010(to SY).
文摘Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
基金supported by the National Natural Science Foundation of China,No.81971246 (to TM)Opening Foundation of Jiangsu Key Laboratory of Neurodegeneration,Nanjing Medical University,No.KF202204 (to LZ and SF)。
文摘Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.
基金supported by grants from the Spanish Ministry of Health-PNSD(2019-I039 and 2023-I024)(to MP)FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación PID2021-1243590B-I100(to VMM)+2 种基金GVA(CIAICO/2021/203)(to MP)the Primary Addiction Care Research Network(RD21/0009/0005)(to MP)a predoctoral fellowship from the Generalitat Valenciana(ACIF/2021/338)(to CPC).
文摘Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.
基金supported by the National Natural Science Foundation of China(Grant No:81903643)the“Young Talent Support Plan”of Xi'an Jiaotong University,the Shaanxi Province Science and Technology Development Plan Project(Grant No.:2022ZDLSF05-05)+1 种基金the Project of Shaanxi Provincial Administration of Traditional Chinese Medicine(Project No.:2021-03-ZZ-002)the Shaanxi Province Science Fund for Distinguished Young Scholars(Grant No:2023-JC-JQ-59).
文摘Hepatocellular carcinoma (HCC) is one of the most common tumor types and remains a major clinical challenge. Increasing evidence has revealed that mitophagy inhibitors can enhance the effect of chemotherapy on HCC. However, few mitophagy inhibitors have been approved for clinical use in humans. Pyrimethamine (Pyr) is used to treat infections caused by protozoan parasites. Recent studies have reported that Pyr may be beneficial in the treatment of various tumors. However, its mechanism of action is still not clearly defined. Here, we found that blocking mitophagy sensitized cells to Pyr-induced apoptosis. Mechanistically, Pyr potently induced the accumulation of autophagosomes by inhibiting autophagosome-lysosome fusion in human HCC cells. In vitro and in vivo studies revealed that Pyr blocked autophagosome-lysosome fusion by upregulating BNIP3 to inhibit synaptosomal-associated protein 29 (SNAP29)-vesicle-associated membrane protein 8 (VAMP8) interaction. Moreover, Pyr acted synergistically with sorafenib (Sora) to induce apoptosis and inhibit HCC proliferation in vitro and in vivo. Pyr enhances the sensitivity of HCC cells to Sora, a common chemotherapeutic, by inhibiting mitophagy. Thus, these results provide new insights into the mechanism of action of Pyr and imply that Pyr could potentially be further developed as a novel mitophagy inhibitor. Notably, Pyr and Sora combination therapy could be a promising treatment for malignant HCC.
基金financial support by National Key Research and Development Project(Grant No.2023YFE0109600)Guangzhou Key Research and Development Program(Grant No.2023B03J1330)+5 种基金National Program for Support of Topnotch Young Professionals(Grant No.x2qsA4210090)Guangzhou Basic and Applied Basic Research Foundation(Grant No.2024A04J3413)National Natural Science Foundation of China(Grant No.32201499)State Key Laboratory of Pulp and Paper Engineering(Grant Nos.2023PY01 and 202215)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012519 and 2023B1515040013)China Postdoctoral Science Foundation(Grant No.2023M732021).
文摘Photocatalysis has emerged as an effective approach to sustainably convert biomass into value-added products.CoSe_(2)is a promising nonprecious,efficient cocatalyst for photooxidation,which can facilitate the separation of photogenerated electron–holes,increase the reaction rates,and enhance photocatalytic efficiency.In this work,we synthesized a stable and efficient photocatalysis system of CoSe_(2)/g-C_(3)N_(4)through attaching CoSe_(2)on g-C_(3)N_(4)sheets,with a yield of 50.12%for the selective photooxidation of xylose to xylonic acid.Under light illumination,the photogenerated electrons were prone to migrating from g-C_(3)N_(4)to CoSe_(2)due to the higher work function of CoSe_(2),resulting in the accelerated separation of photogenerated electron–holes and the promoted photooxidation.Herein,this study reveals the unique function of CoSe_(2),which can significantly promote oxygen adsorption,work as an electron sink and accelerate the generation of ·O_(2)^(-),thereby improving the selectivity toward xylonic acid over other by-products.This work provides useful insights into the design of selective photocatalysts by engineering g-C_(3)N_(4)for biomass high-value utilization.
基金Supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBJC00001the Key Discipline Special Project of Tianjin Municipal Health Commission,No.TJWJ2022XK016.
文摘BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(No.52202003)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011893)+1 种基金State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China(No.Sklpm-KF-27)Guangzhou Basic and Applied Basic Research Foundation(No.SL2022A04J00746)。
文摘Mechanoluminescent(ML)materials,which have the ability to convert mechanical energy to optical energy,have found huge promising applications such as in stress imaging and anti-counterfeiting.However,the main reported ML phosphors are based on trap-related ones,thus hindering the practical applications due to the requirement of complex light pre-irradiation process.Here,a self-recoverable near infrared(NIR)ML material of Lali-xO:xCr^(3+)(x=0.2%,0.4%,0.6%,0.8%,1.0%,and 1.2%)has been developed.Based on the preheating method and corresponding ML performance analysis,the influences of residual carriers are eliminated and the detailed dynamic luminescence process analysis is realized.Systematic experiments are conducted to reveal the origin of the ML emissions,demonstrating that ML is dictated more by the non-centrosymmetric piezoelectric crystal characteristic.In general,this work has provided significant references for exploring more efficient NIR ML materials,which may provide potential applications in anti-counterfeiting and bio-stress sensing.
文摘The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.
基金supported by 1.3.5 project for disciplines of excellence,West China Hospital,Sichuan University(No.ZYGD23030)National Natural Science Foundation of China(No.82172254)Science and Technological Supports Project of Sichuan Province,China(No.2024YFFK0214).
文摘With organ transplantation facing many dilemmas,tissue and organ regeneration as an alternative has bright prospects.In regenerative medicine,Three-dimensional(3D)printing technology and stem cells has been widely applied to the treatment of diseases related to tissue or organ replacement in dentistry,respectively.However,there are very few studies on the combination of the two,and even fewer clinical studies have been reported in dentistry.In this review,the current oral tissue engineering in vivo and in vitro based on 3D printing and stem cell technology will be summarized,and the discussion on the development prospects of this research direction will be given.Besides,the working principles and advantages&disadvantages of several types of 3D printers,as well as the mechanism of stem cells in tissue engineering will be elucidated.This review provides clinicians and researchers with the current state of research and trends in the combination of stem cells and 3D printing technology to treat oral-related diseases.In the future,3D bioprinters are poised for ongoing innovation with the advancement of relevant technologies,catalyzing an increase in clinical studies focused on treating oral diseases using stem cells and 3D scaffolds.Consequently,these developments will further advance the field of oral tissue engineering.
基金Supported by Hebei Province Medical Science Research Project Plan,No.20230755.
文摘BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2(LILRB2)in GC.We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands,angiopoietin-like protein 2(ANGPTL2)and human leukocyte antigen-G(HLA-G),contributing to immunosuppression.AIM To investigate the relationship between CSF3/CSF3R and LILRB2,as well as its ligands ANGPTL2 and HLA-G,in GC.METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed,stratifying patients by CSF3R expression.Differentially expressed genes and immune checkpoints were evaluated.Immunohistochemistry(IHC)was performed on GC tissues.Correlation analyses of CSF3R,LILRB2,ANGPTL2,and HLA-G were conducted using The Cancer Genome Atlas data and IHC results.GC cells were treated with CSF3,and expression levels of LILRB2,ANGPTL2,and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting.RESULTS Among 122 upregulated genes in high CSF3R expression groups,LILRB2 showed the most significant increase.IHC results indicated high expression of LILRB2(63.0%),ANGPTL2(56.5%),and HLA-G(73.9%)in GC tissues.Strong positive correlations existed between CSF3R and LILRB2,ANGPTL2,and HLA-G mRNA levels(P<0.001).IHC confirmed positive correlations between CSF3R and LILRB2(P<0.001),and HLA-G(P=0.010),but not ANGPTL2(P>0.05).CSF3 increased LILRB2,ANGPTL2,and HLA-G expression in GC cells.Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression,impacting CSF3’s regulatory effects.CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands,with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.
基金Supported by Science and Technology Research Project of Hubei Provincial Department of Education(No.B2021108).
文摘AIM:To explore the neuroprotective effects of high mobility group box 2(HMGB2)knockdown on retinal ganglion cells(RGCs)in the retinal ischemia-reperfusion injury(RIRI).METHODS:Oxygen-glucose deprivation(OGD)-injured RGCs from postnatal three-day C57BL/6 mice pups and high intraocular pressure(IOP)-induced RIRI mice were used as cellular and animal models of RIRI.The expression of HMGB2 in the retina of RIRI mice and OGD-injured RGCs was detected through reverse transcription-polymerase chain reaction(RT-qPCR)and Western blotting.The effects of HMGB2 silencing on the morphological changes,RGCs survival,and cell apoptosis in mouse retinal tissues were observed through H&E staining,immunofluorescence staining with RNA-binding protein with multiple splicing(RBPMS)antibody,and TUNEL staining,respectively.RGC viability and apoptosis were examined by CCK-8 and flow cytometry assays.The levels of proteins associated with NOD-like receptor thermal protein domain associated protein 3(NLRP3)-mediated pyroptosis[NLRP3,Caspase-1,GSDMD-N,interleukin(IL)-1β,IL-18]in vivo and in vitro were measured by Western blotting.RESULTS:HMGB2 protein and NLRP3 were upregulated in the retina of RIRI mice and OGD-injured RGCs(P<0.001).The retina was edematous,accompanied by disorganized cell arrangement and decreased thickness of all layers,and obvious vacuoles in ganglion cell layer.HMGB2 silencing alleviated the reduction in total retinal thickness and the severity of retinal tissue damage as well as suppressed RGC loss and retinal cell apoptosis in RIRI mice.OGD-induced RGC apoptosis was ameliorated after downregulation of HMGB2 in vitro.Intravitreal injection of the AAV-sh-HMGB2 and si-HMGB2 resulted in significantly decrease of NLRP3,Caspase-1,GSDMD-N,IL-1β,and IL-18 protein levels in the retinal tissues of RIRI mice and OGD-injured RGCs,respectively(all P<0.001).CONCLUSION:HMGB2 knockdown protects against RGC apoptosis and pyroptosis after RIRI through suppressing NLRP3 inflammasome activation.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金Natural Science Foundation of Anhui Province,No.2208085MH216Major Natural Science and Technology Project of Bengbu Medical College,No.2020byfy004Scientific Research Program of Anhui Provincial Health Commission,No.AHWJ2023BAc10028.
文摘BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.
基金supported by the Shanghai Agricultural Science and Technology Program (2022-02-08-00-12-F01176)he National Natural Science Foundation of China (52006135)
文摘Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.