According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimize...According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimized to ensure construction safety. New drainage tunnels were considered. Furthermore, lining structures and grouting pressures were modified during the excavation of tunnels. The construction scheme was updated dynamically based on the complex geological conditions. For instances, the diversion tunnels were first excavated by drilling and blasting method at the first stage of construction, and then by the combination method of tunnel boring machine (TBM) and drilling and blasting, and finally by drilling and blasting method. Through optimized scheme and updated construction scheme, the excavation of diversion tunnel #1 was successfully completed in June, 2011. This paper summarizes the key issues in rock mechanics associated with the construction of the long and deep diversion tunnels at Jinping II hydropower station. The experiences of design and construction obtained from this project could provide reference to similar projects.展开更多
Jinping Ⅱ hydropower station is located in a high in-situ stress region in Southwest China. During the excavations of the transportation and drainage tunnels, more than 460 rockburst events were recorded in the trans...Jinping Ⅱ hydropower station is located in a high in-situ stress region in Southwest China. During the excavations of the transportation and drainage tunnels, more than 460 rockburst events were recorded in the transportation tunnel and 110 in the drainage tunnel, which has a serious and negative influence on the tunnels’ construction and the safety of staff and equipment. In the paper, the characters of rockburst patterns are analyzed for the transportation and drainage tunnels. The results are illustrated as follow: (1) Most of intensive rockbursts occur in the layer T2b, and continuous occurrences of rockbursts are more frequently observed than those in other layers. (2) The critical overburden depth of rockburst in the transportation tunnel is 600 m, and the length of the continuous occurrence section of rockburst is smaller than 25 m. The damaged depth of the rockburst has the tendency to increase with the increasing overburden depth, and the maximum damaged depth is over 3.5 m. (3) From east to west (west to east) in Jinping Ⅱ hydropower station, the rockburst usually takes place in the right (left) side of tunnel working face, and then the left (right) or roof of the tunnel. The total length of the continuous occurrence section of rockburst is 57.4%–62.2% of the overall rockburst length, followed by the rockbursts of flake-splitting type and other types. (4) Compared with the transportation tunnel, the intensity of rockburst in the drainage tunnel is higher while the length of the continuous occurrence section of rockburst is smaller. The rockburst section with length less than 10 m and depth of 1 m mainly occurs in the layer at a depth of 1 800–2 000 m. The influences of opening geometry and excavation method on the characteristics of the adjacent zone are great, but the influence of the stress among the tunnel group induced by excavation is relatively low.展开更多
The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the ...The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.展开更多
Jinping I hydropower station is one of the most challenging projects in China due to its highest arch dam and complex geological conditions for construction.After geological investigation into the dam foundation,a few...Jinping I hydropower station is one of the most challenging projects in China due to its highest arch dam and complex geological conditions for construction.After geological investigation into the dam foundation,a few large-scale weak discontinuities are observed.The rock masses in the left dam foundation are intensively unloaded,approximately to the depth of 150–300 m.These serious geological defects lead to a geological asymmetry on the left and right banks,and thus some major diffculties of dam construction are encountered.In this paper,the influences of geological defects on the project are analyzed,followed by the concepts and methods of treatment design.Based on the analysis,the treatment methods of the weak rock masses and discontinuities are carefully determined,including the concrete cushion,concrete replacement grids,and consolidation grouting.They work together to enhance the strength and integrity of the dam foundation.Evaluations and calibrations through geo-mechanical model tests in combination with feld monitoring results in early impoundment period show that the arch dam and its foundation are roughly stable,suggesting that the treatment designs are reasonable and effective.The proposed treatment methods and concepts in the context can be helpful for similar complex rock projects.展开更多
Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper ...Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper abutment, deforming tensile rip wedge in the middle part and deep fractures are comprehensively analyzed based on the geological conditions, construction methods and monitoring results of left abutment slope in Jinping Ⅰ hydropower station. Safety analyses of surface and shallow-buried rock masses and the corresponding anchorage system are presented. The monitoring results indicate that the global stability of the large wedge block in the left abutment is effectively under control, and the abutment slope is stable in a global sense. After the completion of excavation, the deformations of toppling block at the top of the slope and deep fracture zone continue at a very low rate, which can be explained as 'rock mass creep'. Further monitoring and analysis are needed.展开更多
The four diversion tunnels at Jinping Ⅱ hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500-2000 m and a maximum depth of 2525 m.The tunnel structure ...The four diversion tunnels at Jinping Ⅱ hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500-2000 m and a maximum depth of 2525 m.The tunnel structure was subjected to a maximum external water pressure of 10.22 MPa and the maximum single-point groundwater inflow of 7.3 m^3/s. The success of the project construction was related to numerous challenging issues such as the stability of the rock mass surrounding the deep tunnels, strong rockburst prevention and control, and the treatment of high-pressure, large-volume groundwater infiltration. During the construction period, a series of new technologies was developed for the purpose of risk control in the deep tunnel project. Nondestructive sampling and in-situ measurement technologies were employed to fully characterize the formation and development of excavation damaged zones(EDZs), and to evaluate the mechanical behaviors of deep rocks. The time effect of marble fracture propagation, the brittleeductileeplastic transition of marble, and the temporal development of rock mass fracture and damage induced by high geostress were characterized. The safe construction of deep tunnels was achieved under a high risk of strong rockburst using active measures, a support system comprised of lining, grouting, and external water pressure reduction techniques that addressed the coupled effect of high geostress, high external water pressure, and a comprehensive early-warning system. A complete set of technologies for the treatment of high-pressure and large-volume groundwater infiltration was developed. Monitoring results indicated that the Jinping II hydropower station has been generally stable since it was put into operation in 2014.展开更多
Rock sampling with traditional coring method would cause initial damage to rock samples induced by in-situ stress relief during coring.To solve this problem,a damage-free coring method is proposed in this paper.The pr...Rock sampling with traditional coring method would cause initial damage to rock samples induced by in-situ stress relief during coring.To solve this problem,a damage-free coring method is proposed in this paper.The proposed coring scheme is numerically modeled first,and then it is verified by comparative laboratory tests using rock samples both obtained by conventional coring method and the proposed damage-free coring method.The result indicates that the in-situ stresses in sampling area could be reduced by 30%-50% through drilling a certain number of destressing holes around the whole sampling area.The spacing between adjacent destressing holes is about 10 cm.The average uniaxial compressive strength(UCS) of rock samples obtained by the damage-free coring method in Jinping II hydropower station with overburden depth of 1 900 m is higher than that of samples obtained by the conventional coring method with the same depth by 5%-15% and an average of 8%.In addition,the effectiveness of damage-free coring method can also be verified by acoustic emission(AE) monitoring.The AE events monitored during uniaxial compression test of damage-free coring samples is fewer than that of conventional coring samples at the primarily loading phase.展开更多
文摘According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimized to ensure construction safety. New drainage tunnels were considered. Furthermore, lining structures and grouting pressures were modified during the excavation of tunnels. The construction scheme was updated dynamically based on the complex geological conditions. For instances, the diversion tunnels were first excavated by drilling and blasting method at the first stage of construction, and then by the combination method of tunnel boring machine (TBM) and drilling and blasting, and finally by drilling and blasting method. Through optimized scheme and updated construction scheme, the excavation of diversion tunnel #1 was successfully completed in June, 2011. This paper summarizes the key issues in rock mechanics associated with the construction of the long and deep diversion tunnels at Jinping II hydropower station. The experiences of design and construction obtained from this project could provide reference to similar projects.
基金Supported by the National Natural Science Foundation of China (40902086)the National Key Technology R&D Program in the 11th Five-year Plan of China (2008BAB29B01-5)
文摘Jinping Ⅱ hydropower station is located in a high in-situ stress region in Southwest China. During the excavations of the transportation and drainage tunnels, more than 460 rockburst events were recorded in the transportation tunnel and 110 in the drainage tunnel, which has a serious and negative influence on the tunnels’ construction and the safety of staff and equipment. In the paper, the characters of rockburst patterns are analyzed for the transportation and drainage tunnels. The results are illustrated as follow: (1) Most of intensive rockbursts occur in the layer T2b, and continuous occurrences of rockbursts are more frequently observed than those in other layers. (2) The critical overburden depth of rockburst in the transportation tunnel is 600 m, and the length of the continuous occurrence section of rockburst is smaller than 25 m. The damaged depth of the rockburst has the tendency to increase with the increasing overburden depth, and the maximum damaged depth is over 3.5 m. (3) From east to west (west to east) in Jinping Ⅱ hydropower station, the rockburst usually takes place in the right (left) side of tunnel working face, and then the left (right) or roof of the tunnel. The total length of the continuous occurrence section of rockburst is 57.4%–62.2% of the overall rockburst length, followed by the rockbursts of flake-splitting type and other types. (4) Compared with the transportation tunnel, the intensity of rockburst in the drainage tunnel is higher while the length of the continuous occurrence section of rockburst is smaller. The rockburst section with length less than 10 m and depth of 1 m mainly occurs in the layer at a depth of 1 800–2 000 m. The influences of opening geometry and excavation method on the characteristics of the adjacent zone are great, but the influence of the stress among the tunnel group induced by excavation is relatively low.
文摘The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.
文摘Jinping I hydropower station is one of the most challenging projects in China due to its highest arch dam and complex geological conditions for construction.After geological investigation into the dam foundation,a few large-scale weak discontinuities are observed.The rock masses in the left dam foundation are intensively unloaded,approximately to the depth of 150–300 m.These serious geological defects lead to a geological asymmetry on the left and right banks,and thus some major diffculties of dam construction are encountered.In this paper,the influences of geological defects on the project are analyzed,followed by the concepts and methods of treatment design.Based on the analysis,the treatment methods of the weak rock masses and discontinuities are carefully determined,including the concrete cushion,concrete replacement grids,and consolidation grouting.They work together to enhance the strength and integrity of the dam foundation.Evaluations and calibrations through geo-mechanical model tests in combination with feld monitoring results in early impoundment period show that the arch dam and its foundation are roughly stable,suggesting that the treatment designs are reasonable and effective.The proposed treatment methods and concepts in the context can be helpful for similar complex rock projects.
文摘Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper abutment, deforming tensile rip wedge in the middle part and deep fractures are comprehensively analyzed based on the geological conditions, construction methods and monitoring results of left abutment slope in Jinping Ⅰ hydropower station. Safety analyses of surface and shallow-buried rock masses and the corresponding anchorage system are presented. The monitoring results indicate that the global stability of the large wedge block in the left abutment is effectively under control, and the abutment slope is stable in a global sense. After the completion of excavation, the deformations of toppling block at the top of the slope and deep fracture zone continue at a very low rate, which can be explained as 'rock mass creep'. Further monitoring and analysis are needed.
文摘The four diversion tunnels at Jinping Ⅱ hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500-2000 m and a maximum depth of 2525 m.The tunnel structure was subjected to a maximum external water pressure of 10.22 MPa and the maximum single-point groundwater inflow of 7.3 m^3/s. The success of the project construction was related to numerous challenging issues such as the stability of the rock mass surrounding the deep tunnels, strong rockburst prevention and control, and the treatment of high-pressure, large-volume groundwater infiltration. During the construction period, a series of new technologies was developed for the purpose of risk control in the deep tunnel project. Nondestructive sampling and in-situ measurement technologies were employed to fully characterize the formation and development of excavation damaged zones(EDZs), and to evaluate the mechanical behaviors of deep rocks. The time effect of marble fracture propagation, the brittleeductileeplastic transition of marble, and the temporal development of rock mass fracture and damage induced by high geostress were characterized. The safe construction of deep tunnels was achieved under a high risk of strong rockburst using active measures, a support system comprised of lining, grouting, and external water pressure reduction techniques that addressed the coupled effect of high geostress, high external water pressure, and a comprehensive early-warning system. A complete set of technologies for the treatment of high-pressure and large-volume groundwater infiltration was developed. Monitoring results indicated that the Jinping II hydropower station has been generally stable since it was put into operation in 2014.
基金Supported by the National Basic Research Program of China (973 Program) (2010CB732003)the National Natural Science Foundation of China (51009013,50909077)
文摘Rock sampling with traditional coring method would cause initial damage to rock samples induced by in-situ stress relief during coring.To solve this problem,a damage-free coring method is proposed in this paper.The proposed coring scheme is numerically modeled first,and then it is verified by comparative laboratory tests using rock samples both obtained by conventional coring method and the proposed damage-free coring method.The result indicates that the in-situ stresses in sampling area could be reduced by 30%-50% through drilling a certain number of destressing holes around the whole sampling area.The spacing between adjacent destressing holes is about 10 cm.The average uniaxial compressive strength(UCS) of rock samples obtained by the damage-free coring method in Jinping II hydropower station with overburden depth of 1 900 m is higher than that of samples obtained by the conventional coring method with the same depth by 5%-15% and an average of 8%.In addition,the effectiveness of damage-free coring method can also be verified by acoustic emission(AE) monitoring.The AE events monitored during uniaxial compression test of damage-free coring samples is fewer than that of conventional coring samples at the primarily loading phase.