To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were us...To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. The differences between the two segments demonstrate variation of the geometric structure along the seismogenic faults.(3) The focal mechanism solutions of 32 M_L ≥ 3.5 events in the earthquake sequence have obvious segmental characteristics. Strike-slip earthquakes are dominant on the southern segment, while 50% of events on the northern segment are thrusting and oblique thrusting earthquakes, revealing significant differences in the kinematic features of the seismogenic faults between the two segments.(4) The strain rosettes for the mainshock and the entire sequence of 31 M_L ≥ 3.5 aftershocks correspond to strike-slip type with NWW-SEE compressional white lobes and NNE-SSW extensional black lobes of nearly similar size. The strain rosette and As value of the entire sequence of 22 M_L ≥ 3.5 events on the southern segment are the same as those of the M_S 7.0 mainshock,indicating that the tectonic deformation here is strike-slip. However, the strain rosette of the entire sequence of 10 M_L ≥ 3.5 events on the northern segment show prominent white compressional lobes and small black extensional lobes, and the related As value is up to 0.52,indicating that the tectonic deformation of this segment is oblique thrusting with a certain strike-slip component. Differences between the two segments all reveal distinctly obvious segmental characteristics of the tectonic deformation of the seismogenic faults for the Jiuzhaigou earthquake sequence.展开更多
This paper introduces the response process of the Gansu Earthquake Agency during the Jiuzhaigou M_S7.0 earthquake in Sichuan Province,including earthquake emergency disposal procedures,information reports,disaster inv...This paper introduces the response process of the Gansu Earthquake Agency during the Jiuzhaigou M_S7.0 earthquake in Sichuan Province,including earthquake emergency disposal procedures,information reports,disaster investigation and intensity assessment,seismic monitoring and trend determination,and emergency dissemination. This paper reveals the characteristics of earthquake damage in the quake-hit areas of Gansu Province,draws some corresponding conclusions and summarizes the countermeasures for recovery and reconstruction in the quake-hit areas of Gansu Province.展开更多
This paper expounds the features of the buildings and analyzes the seismic disaster characteristics of the Jiuzhaigou M_S7. 0 earthquake in the area between Songpan and Jiuzhaigou. New buildings (especially the frame ...This paper expounds the features of the buildings and analyzes the seismic disaster characteristics of the Jiuzhaigou M_S7. 0 earthquake in the area between Songpan and Jiuzhaigou. New buildings (especially the frame structure) had good anti-seismic performance,but brick-wood structures and brick-concrete structures sustained large amounts of damage in the earthquake. By computing the seismic damage index,we found that the seismic damage index of the frame structure was far less than that of civil structures and brick-wood structures. The seismic damage index of frame structures were all zero in the Ⅵ area,and increased rapidly with the increase of intensity,but the increasing range was reduced. We also discussed how to evaluate the intensity in areas where there was a lack of buildings or there was only one structure type,which can be referenced in future field work.展开更多
1引言电磁学方法是国内外公认的有良好发展前景的地震监测预测方法之一。震前电磁信号异常已被越来越多震例记录到(范莹莹等,2010;刘奕君等,2014;Zhang et al,2017),这为地震预测提供了一种可能。地震电磁异常是指伴随地震孕育过程而产...1引言电磁学方法是国内外公认的有良好发展前景的地震监测预测方法之一。震前电磁信号异常已被越来越多震例记录到(范莹莹等,2010;刘奕君等,2014;Zhang et al,2017),这为地震预测提供了一种可能。地震电磁异常是指伴随地震孕育过程而产生的电磁辐射源释放的某种电磁信号,由于电磁辐射是直接来自震源的信息,电磁波的趋肤深度大于震源深度,且趋肤深度取决于频率和介质电性结构,因此震前观测到的地下电磁异常源于孕震区的概率较大,且一般该异常又在地震孕育后期出现(李琪等,2008;张建国等,2013)。因此,电磁信号异常具有临震预测的应用前景。展开更多
基金supported by National Science Foundation of China(41574047)National Key R&D Program of China(2018YFC150330501)
文摘To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. The differences between the two segments demonstrate variation of the geometric structure along the seismogenic faults.(3) The focal mechanism solutions of 32 M_L ≥ 3.5 events in the earthquake sequence have obvious segmental characteristics. Strike-slip earthquakes are dominant on the southern segment, while 50% of events on the northern segment are thrusting and oblique thrusting earthquakes, revealing significant differences in the kinematic features of the seismogenic faults between the two segments.(4) The strain rosettes for the mainshock and the entire sequence of 31 M_L ≥ 3.5 aftershocks correspond to strike-slip type with NWW-SEE compressional white lobes and NNE-SSW extensional black lobes of nearly similar size. The strain rosette and As value of the entire sequence of 22 M_L ≥ 3.5 events on the southern segment are the same as those of the M_S 7.0 mainshock,indicating that the tectonic deformation here is strike-slip. However, the strain rosette of the entire sequence of 10 M_L ≥ 3.5 events on the northern segment show prominent white compressional lobes and small black extensional lobes, and the related As value is up to 0.52,indicating that the tectonic deformation of this segment is oblique thrusting with a certain strike-slip component. Differences between the two segments all reveal distinctly obvious segmental characteristics of the tectonic deformation of the seismogenic faults for the Jiuzhaigou earthquake sequence.
基金sponsored by the National Natural Science Foundation of China(51678545)
文摘This paper introduces the response process of the Gansu Earthquake Agency during the Jiuzhaigou M_S7.0 earthquake in Sichuan Province,including earthquake emergency disposal procedures,information reports,disaster investigation and intensity assessment,seismic monitoring and trend determination,and emergency dissemination. This paper reveals the characteristics of earthquake damage in the quake-hit areas of Gansu Province,draws some corresponding conclusions and summarizes the countermeasures for recovery and reconstruction in the quake-hit areas of Gansu Province.
基金sponsored by the Key Technology R&D Program of Jiangsu Province(BE2014731)the Earthquake Science and Technology Spark Plan,CEA(XH16014)
文摘This paper expounds the features of the buildings and analyzes the seismic disaster characteristics of the Jiuzhaigou M_S7. 0 earthquake in the area between Songpan and Jiuzhaigou. New buildings (especially the frame structure) had good anti-seismic performance,but brick-wood structures and brick-concrete structures sustained large amounts of damage in the earthquake. By computing the seismic damage index,we found that the seismic damage index of the frame structure was far less than that of civil structures and brick-wood structures. The seismic damage index of frame structures were all zero in the Ⅵ area,and increased rapidly with the increase of intensity,but the increasing range was reduced. We also discussed how to evaluate the intensity in areas where there was a lack of buildings or there was only one structure type,which can be referenced in future field work.
文摘1引言电磁学方法是国内外公认的有良好发展前景的地震监测预测方法之一。震前电磁信号异常已被越来越多震例记录到(范莹莹等,2010;刘奕君等,2014;Zhang et al,2017),这为地震预测提供了一种可能。地震电磁异常是指伴随地震孕育过程而产生的电磁辐射源释放的某种电磁信号,由于电磁辐射是直接来自震源的信息,电磁波的趋肤深度大于震源深度,且趋肤深度取决于频率和介质电性结构,因此震前观测到的地下电磁异常源于孕震区的概率较大,且一般该异常又在地震孕育后期出现(李琪等,2008;张建国等,2013)。因此,电磁信号异常具有临震预测的应用前景。