The noncarbonaceous Ediacaran discs of variable morphologies from the Jodhpur Sandstone Formation of the Marwar Supergroup, western Rajasthan, suggest different biologic affinities of plant and animal kingdom. These d...The noncarbonaceous Ediacaran discs of variable morphologies from the Jodhpur Sandstone Formation of the Marwar Supergroup, western Rajasthan, suggest different biologic affinities of plant and animal kingdom. These discs are commonly preserved on the bedding surfaces of siliciclastic sandstone and shale in strong positive relief and appear to possess a flexible to rigid body. Discs assignable to Aspidella, Cyclomedusa, Nimbia and Heimalora;all possibly inclining towards cnidarian affinity are being reported from the sandstone beds in Sursagar area. Variable morphologies among discs preserved in siliciclastic shale beds from the Artiya Kalan area support scyphozoan affinity (earlier named Marsonia from the same locality) and cnidarian affinity for small discs comparable with Funisia (considered being the first animals having sexual reproduction). Disc’s morphologies also suggest ephyra stage of Aurilia (a cnidarian form) or budding stages of some fungi, like Germinosphaera (multicellular benthic fungal fossils) and noncarbonaceous discs with well preserved wrinkles and folds like in Chuaria. Discs from the Jodhpur Sandstone, may at times display taphonomic interplay, but consistency and repetition in morphology support variable biological affinities representing diverse assemblage and advance ecosystem prevailing during Ediacaran period. A degree of genetic variability can be expected within any taxa, and this may be compounded by preservation factors affecting the Jodhpur Ediacaran discs. Sudden increase in size or gigantism is a common feature of Ediacaran life, which is evident in case of Jodhpur discs also. On the basis of fossil assemblage, the Jodhpur Group (the Marwar Supergroup) is regionally correlated with the Bhander Group of the Vindhyan Supergroup and Krol Group of Lesser Himalaya. Globally, the assemblage is comparable with the Long Mynd Group, Shropshire, UK, Fermuse Formation Newfoundland, South Australia, Russia and Norway.展开更多
文摘The noncarbonaceous Ediacaran discs of variable morphologies from the Jodhpur Sandstone Formation of the Marwar Supergroup, western Rajasthan, suggest different biologic affinities of plant and animal kingdom. These discs are commonly preserved on the bedding surfaces of siliciclastic sandstone and shale in strong positive relief and appear to possess a flexible to rigid body. Discs assignable to Aspidella, Cyclomedusa, Nimbia and Heimalora;all possibly inclining towards cnidarian affinity are being reported from the sandstone beds in Sursagar area. Variable morphologies among discs preserved in siliciclastic shale beds from the Artiya Kalan area support scyphozoan affinity (earlier named Marsonia from the same locality) and cnidarian affinity for small discs comparable with Funisia (considered being the first animals having sexual reproduction). Disc’s morphologies also suggest ephyra stage of Aurilia (a cnidarian form) or budding stages of some fungi, like Germinosphaera (multicellular benthic fungal fossils) and noncarbonaceous discs with well preserved wrinkles and folds like in Chuaria. Discs from the Jodhpur Sandstone, may at times display taphonomic interplay, but consistency and repetition in morphology support variable biological affinities representing diverse assemblage and advance ecosystem prevailing during Ediacaran period. A degree of genetic variability can be expected within any taxa, and this may be compounded by preservation factors affecting the Jodhpur Ediacaran discs. Sudden increase in size or gigantism is a common feature of Ediacaran life, which is evident in case of Jodhpur discs also. On the basis of fossil assemblage, the Jodhpur Group (the Marwar Supergroup) is regionally correlated with the Bhander Group of the Vindhyan Supergroup and Krol Group of Lesser Himalaya. Globally, the assemblage is comparable with the Long Mynd Group, Shropshire, UK, Fermuse Formation Newfoundland, South Australia, Russia and Norway.