Time-resolved Kerr rotation spectroscopy is used to determine the sign of the g factor of carriers in a semiconductor material, with the help of a rotatable magnetic field in the plane of the sample. The spin precessi...Time-resolved Kerr rotation spectroscopy is used to determine the sign of the g factor of carriers in a semiconductor material, with the help of a rotatable magnetic field in the plane of the sample. The spin precession signal of carriers at a fixed time delay is measured as a function of the orientation of the magnetic field with a fixed strength B. The signal has a sine-like form and its phase determines the sign of the g factor of carriers. As a natural extension of previous methods to measure the (time-resolved) photoluminescence or time-resolved Kerr rotation signal as a function of the magnetic field strength with a fixed orientation, such a method gives the correct sign of the g factor of electrons in GaAs. Furthermore, the sign of carriers in a (Ga, Mn)As magnetic semiconductor is also found to be negative.展开更多
A long enough period of observation of the Sun’s gravitational dragging effects by using a modified Cavendish’s balance output of experimental evidence shows new patterns. Those patterns can be explained assuming th...A long enough period of observation of the Sun’s gravitational dragging effects by using a modified Cavendish’s balance output of experimental evidence shows new patterns. Those patterns can be explained assuming that the Sun has a torus with rotation, precession, and nutation. This purpose of this paper is to introduce the frequencies of all those movements. The torus’s rotational period can be used to explain the Sun’s magnetic pole reversal. Utilizing a modified Cavendish’s balance showed an output of dragging forces stronger than the attraction between the gravitational masses. This tool afforded this research a new experimental possibility to a more precise determination of the Universal Gravitational Constant Big G. Moreover, the dragging forces directly affect any volume of mass, which includes the atmosphere. This paper shows a correlation between the Sun’s dragging peaks and density of the air squared. The aforementioned correlation and the inverse cubic relation with the distance to the Sun are common for the dragging and tide forces providing the possibility that tidal forces are also a gravitational dragging consequence. The last 2017 total Solar eclipse created a new temporal reaction on the modified Cavendish’s balance. That temporal pattern looks as the spatial pattern created by an opaque disk. This similarity allows the researcher to calculate that the dragging forces are transmitted by photons with spatial periodicity of value λ = 6.1 km.展开更多
Experimental determinations of Newton’s gravitational constant, Big G, have increased, in number and precision, during the last 30 years. There is, however, a persistent discrepancy between various authors. After exa...Experimental determinations of Newton’s gravitational constant, Big G, have increased, in number and precision, during the last 30 years. There is, however, a persistent discrepancy between various authors. After examining some literature proposing that the differences in Big G might be a function of the length of the day along the years, this paper proposes an alternative hypothesis in which the periodicity of said variation is a function of the relative periodicity of the Sun-Earth distance. The hypothesis introduced here becomes a direct application of the Kerr Metric that describes a massive rotating star. The Kerr solution for the equations of the General Theory of Relativity of Albert Einstein fits well with this relative periodicity and adequately predicts the arrangement of the ex-perimental G values reported by sixteen different laboratories. Also, the author explains how the Sun disturbs gravity on the surface of the Earth.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2009CB929301)the National Natural Science Foundation of China (Grant No. 10911130232)
文摘Time-resolved Kerr rotation spectroscopy is used to determine the sign of the g factor of carriers in a semiconductor material, with the help of a rotatable magnetic field in the plane of the sample. The spin precession signal of carriers at a fixed time delay is measured as a function of the orientation of the magnetic field with a fixed strength B. The signal has a sine-like form and its phase determines the sign of the g factor of carriers. As a natural extension of previous methods to measure the (time-resolved) photoluminescence or time-resolved Kerr rotation signal as a function of the magnetic field strength with a fixed orientation, such a method gives the correct sign of the g factor of electrons in GaAs. Furthermore, the sign of carriers in a (Ga, Mn)As magnetic semiconductor is also found to be negative.
文摘A long enough period of observation of the Sun’s gravitational dragging effects by using a modified Cavendish’s balance output of experimental evidence shows new patterns. Those patterns can be explained assuming that the Sun has a torus with rotation, precession, and nutation. This purpose of this paper is to introduce the frequencies of all those movements. The torus’s rotational period can be used to explain the Sun’s magnetic pole reversal. Utilizing a modified Cavendish’s balance showed an output of dragging forces stronger than the attraction between the gravitational masses. This tool afforded this research a new experimental possibility to a more precise determination of the Universal Gravitational Constant Big G. Moreover, the dragging forces directly affect any volume of mass, which includes the atmosphere. This paper shows a correlation between the Sun’s dragging peaks and density of the air squared. The aforementioned correlation and the inverse cubic relation with the distance to the Sun are common for the dragging and tide forces providing the possibility that tidal forces are also a gravitational dragging consequence. The last 2017 total Solar eclipse created a new temporal reaction on the modified Cavendish’s balance. That temporal pattern looks as the spatial pattern created by an opaque disk. This similarity allows the researcher to calculate that the dragging forces are transmitted by photons with spatial periodicity of value λ = 6.1 km.
文摘Experimental determinations of Newton’s gravitational constant, Big G, have increased, in number and precision, during the last 30 years. There is, however, a persistent discrepancy between various authors. After examining some literature proposing that the differences in Big G might be a function of the length of the day along the years, this paper proposes an alternative hypothesis in which the periodicity of said variation is a function of the relative periodicity of the Sun-Earth distance. The hypothesis introduced here becomes a direct application of the Kerr Metric that describes a massive rotating star. The Kerr solution for the equations of the General Theory of Relativity of Albert Einstein fits well with this relative periodicity and adequately predicts the arrangement of the ex-perimental G values reported by sixteen different laboratories. Also, the author explains how the Sun disturbs gravity on the surface of the Earth.