This paper continues our recent work on the relationship between discrete contact interactions at the microscopic scale and continuum contact interactions at the macroscopic scale (Hulikal et al., J. Mech. Phys. Solid...This paper continues our recent work on the relationship between discrete contact interactions at the microscopic scale and continuum contact interactions at the macroscopic scale (Hulikal et al., J. Mech. Phys. Solids 76, 144-161, 2015). The focus of this work is on adhesion. We show that a collection of a large number of discrete elements governed by a threshold-force based model at the microscopic scale collectively gives rise to continuum fracture mechanics at the macroscopic scale. A key step is the introduction of an efficient numerical method that enables the computation of a large number of discrete contacts. Finally, while this work focuses on scaling laws, the methodology introduced in this paper can also be used to study rough-surface adhesion.展开更多
The adhesion failure has become one dominant factor in determining the reliability and service life of miniaturized devices subject to loadings with arbitrary orientations.This article establishes an adhesive full sti...The adhesion failure has become one dominant factor in determining the reliability and service life of miniaturized devices subject to loadings with arbitrary orientations.This article establishes an adhesive full stick contact model between an elastic half-space and a rigid cylinder loaded in any direction.Using the Papkovich-Neuber functions,the Fourier integral transform,and the asymmetric bipolar coordinates,the exact solution is obtained.Unlike the Johnson-Kendall-Roberts(JKR)model,the present adhesive contact model takes into account the effects of the load direction as well as the coupling of the normal and tangential contact stresses.Besides,it considers the full stick contact which has large values of the friction coefficient between contacting surfaces,contrary to the frictionless contact supposed in the JKR model.The result shows that suitable angles can be found,which makes the contact surfaces difficult to be peeled off or easy to be pressed into.展开更多
基金support for this study from the National Science Foundation of the United States (Grant EAR 1142183)the Terrestrial Hazards Observations and Reporting Center (THOR) at the California Institute of Technology
文摘This paper continues our recent work on the relationship between discrete contact interactions at the microscopic scale and continuum contact interactions at the macroscopic scale (Hulikal et al., J. Mech. Phys. Solids 76, 144-161, 2015). The focus of this work is on adhesion. We show that a collection of a large number of discrete elements governed by a threshold-force based model at the microscopic scale collectively gives rise to continuum fracture mechanics at the macroscopic scale. A key step is the introduction of an efficient numerical method that enables the computation of a large number of discrete contacts. Finally, while this work focuses on scaling laws, the methodology introduced in this paper can also be used to study rough-surface adhesion.
基金supported by the National Natural Science Foundation of China(Nos.11972257,11832014,and 11472193)the China Scholarship Council(CSC)the Fundamental Research Funds for the Central Universities(No.22120180223)。
文摘The adhesion failure has become one dominant factor in determining the reliability and service life of miniaturized devices subject to loadings with arbitrary orientations.This article establishes an adhesive full stick contact model between an elastic half-space and a rigid cylinder loaded in any direction.Using the Papkovich-Neuber functions,the Fourier integral transform,and the asymmetric bipolar coordinates,the exact solution is obtained.Unlike the Johnson-Kendall-Roberts(JKR)model,the present adhesive contact model takes into account the effects of the load direction as well as the coupling of the normal and tangential contact stresses.Besides,it considers the full stick contact which has large values of the friction coefficient between contacting surfaces,contrary to the frictionless contact supposed in the JKR model.The result shows that suitable angles can be found,which makes the contact surfaces difficult to be peeled off or easy to be pressed into.