This paper studies spectral density estimation of a strictly stationary r-vector valued continuous time series including missing observations. The finite Fourier transform is constructed in L-joint segments of observa...This paper studies spectral density estimation of a strictly stationary r-vector valued continuous time series including missing observations. The finite Fourier transform is constructed in L-joint segments of observations. The modified periodogram is defined and smoothed to estimate the spectral density matrix. We explore the properties of the proposed estimator. Asymptotic distribution is discussed.展开更多
文摘This paper studies spectral density estimation of a strictly stationary r-vector valued continuous time series including missing observations. The finite Fourier transform is constructed in L-joint segments of observations. The modified periodogram is defined and smoothed to estimate the spectral density matrix. We explore the properties of the proposed estimator. Asymptotic distribution is discussed.