Background:Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations,such as firefighting,law enforcement,mili...Background:Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations,such as firefighting,law enforcement,military,and sports.A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment.Methods:To study regulatory processes in intense physical activity simulating real-life conditions,we performed a multi-omics analysis of 3 biofluids(blood plasma,urine,and saliva)collected from 11 wildland firefighters before and after a 45 min,intense exercise regimen.Omics profiles post-vs.pre-exercise were compared by Student’s t-test followed by pathway analysis and comparison between the different omics modalities.Results:Our multi-omics analysis identified and quantified 3835 proteins,730 lipids and 182 metabolites combining the 3 different types of samples.The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands.The urine analysis showed a strong,concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites,reabsorption of nutrients and maintenance of fluid balance.In saliva,we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides.A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection.Conclusions:This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility,suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.展开更多
This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si...This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.展开更多
KK tubular joints are used to build jacket-type offshore structures. These joints are mostly made up of structural steel. These joints can withstand yield, buckling, and lateral loads depending on the structure’s des...KK tubular joints are used to build jacket-type offshore structures. These joints are mostly made up of structural steel. These joints can withstand yield, buckling, and lateral loads depending on the structure’s design and environment. In this study, the Finite Element Model of the KK-type tubular joint has been created, and analysis has been performed under static loading using the Static Structural analysis system of ANSYS 19.2 commercial software and structural mechanics module of COMSOL Multiphysics. The KK tubular model is analyzed under compressive load conditions, and the resulting stress, strain, and deformation values are tabulated in both graphical and tabular form. This study includes a comparison of the outcomes from both commercial software. The results highlight that maximum stress, strain, and deformation values decrease as joint thickness increases. This study holds significant relevance in advancing the understanding of tubular KK joints and their response to compressive loading. The insights derived from the analysis have the potential to contribute to the development of more robust and reliable tubular KK joints in various engineering and structural applications. .展开更多
BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing t...BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.展开更多
Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. M...Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. Methods: Thirty-two late-stage elderly individuals were evaluated for knee pain during rest, walking, and program exercises, with and without TENS. Gait analysis was performed using an IoT-based gait analysis device to examine the effects of TENS-induced analgesia on gait. Results: TENS significantly reduced knee pain during rest, walking, and programmed exercises, with the greatest analgesic effect observed during walking. The greater the knee pain without TENS, the more significant the analgesic effect of TENS. A comparison of gait parameters revealed a significant difference only in the gait cycle time, with a trend towards faster walking with TENS;however, the effect was limited. Conclusion: TENS effectively relieves knee pain in late-stage elderly individuals and can be safely applied during exercise. Pain management using TENS provides important insights into the implementation of exercise therapy in this age group.展开更多
Four different structural models of artificial joints were developed and the finite element method (FEM) was employed to investigate their mechanical characteristics under static and dynamic conditions. The material...Four different structural models of artificial joints were developed and the finite element method (FEM) was employed to investigate their mechanical characteristics under static and dynamic conditions. The materials used in the FEM calculation were ultra-high molecular weight polyethylene (UHMWPE), 316L stainless steel, CoCrMo alloy and Ti6A14V alloy. The stress distribution, strain, and elastic deformation under static and dynamic conditions were obtained. Analysis and comparison of the ~alculation results of different models were conducted. It is shown that with the same parameters the model of a metallic femur head covered with an artificial cartilage layer is more similar to the structure of the natural human joint and its mechanical characteristics are the best of the four models.展开更多
Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical...Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.展开更多
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the p...Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.展开更多
Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quan...Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quantitative traits, which include major gene detection and its effect and variation estimation. The effect and variation of major gene are estimated by the maximum likelihood method implemented via expectation-maximization (EM) algorithm. Major gene is tested with the likelihood ratio (LR) test statistic. Extensive simulation studies showed that joint analysis not only increases the statistical power of major gene detection but also improves the precision and accuracy of major gene effect estimates. An example of the plant height and the number of tiller of F2 population in rice cross Duonieai x Zhonghua 11 was used in the illustration. The results indicated that the genetic difference of these two traits in this cross refers to only one pleiotropic major gene. The additive effect and dominance effect of the major gene are estimated as -21.3 and 40.6 cm on plant height, and 22.7 and -25.3 on number of tiller, respectively. The major gene shows overdominance for plant height and close to complete dominance for number of tillers.展开更多
AIM To analyze how various implants placement variables affect sacroiliac(SI) joint range of motion. METHODS An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusio...AIM To analyze how various implants placement variables affect sacroiliac(SI) joint range of motion. METHODS An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants(iF use Implant System~?). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. RESULTS Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion(flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation(9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of(8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively,when compared with the 3 implant model.CONCLUSION Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.展开更多
A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among t...A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among these models, the coupled bolt model provides the best accurate responses compared with the experimental results. The contact bolt model shows the best effectiveness and usefulness in view of operational time. The bolt models proposed in this study are adopted for a dynamic characteristic analysis of a large diesel engine consisting of several parts which are connected by many bolts. The dynamic behavior of the entire engine structure was investigated by experiment. The coupled bolt model and the contact bolt model were applied to model the assembly of engine with high preload. The experimental results are in good agreement with the finite element method (FEM) results. Compared with the other models, the contact bolt model presented in this paper is more effective and useful in view of operational time and experience of analysts.展开更多
The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake ...The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake records are applied to a structure at successively increasing intensity levels,which causes the structure to shift from the elastic state into the inelastic state and finally into collapse.In this way,the limit-states and capacity of a structure can be determined.In the present research,the IDA of a concrete gravity dam considering a nonlinear concrete behavior,and sliding planes within the dam body and at the dam-foundation interface,is performed.The influence of the friction angle and lift joint slope on the response parameters are investigated and the various limit-states of the dam are recognized.It is observed that by introducing a lift joint,the tensile damage can be avoided for the dam structure.The lift joint sliding is essentially independent of the base joint friction angle and the upper ligament over the inclined lift joint slides into the upstream direction in strong earthquakes.展开更多
Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies ...Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km 2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work.展开更多
Stress Joint (SJ) plays a key role in the Top Tensioned Riser (TTR) system for deep water engineering. A preliminary design method of tapered SJ is proposed in the paper, which could help designers obtain accurate...Stress Joint (SJ) plays a key role in the Top Tensioned Riser (TTR) system for deep water engineering. A preliminary design method of tapered SJ is proposed in the paper, which could help designers obtain accurate design data. After a further sensitive analysis is carried out, the related parameters choice and control methods are recommended in the engineering practice. By taking the extreme environment conditions into consideration, the effects of bending stress reduction and curve control are analyzed, and the 3-D FE models are established by ABQOUS for numerical evaluation to verify the correctness of design results. At last, dynamic analysis and fatigue analysis, based on actual project, are carried out with designed stress joint. The analysis results prove the feasibility and guidance of this method in the practical engineering applications.展开更多
The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and...The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and dis-placement fields under axisymmetrical and asymmetric stress conditions. For the same rock masses and under axisym-metrical stress conditions,the radius of the plastic zone in terms of Hoek-Brown criterion is generally an approximation of the radius in terms of the Mohr-Coulomb criterion. The radius in terms of the Hoek-Brown criterion is larger under low stress conditions. For poor quality rock masses (GSI<25),measures (such as grouting,setting rock bolts,etc.) that improve the GSI of rock masses are effective in improving the stability of tunnels. It is not advisable to improve the sta-bility of the tunnels by providing a small support resistance p through shotcrete,except for very poor quality jointed rock masses. Without reference to the quality of the rock mass,the disturbance factor D should not less than 0.5. Meas-ures which disturb rock masses during tunnel construction should be taken carefully when the tunnel depth increases.展开更多
For the four-bar beating-up mechanism of air-jet loom,the plain bearing of linkage is the bearing with dynamic load,and is immersed in the lubricant-box.If the joint clearance is considered,the research on linkage mov...For the four-bar beating-up mechanism of air-jet loom,the plain bearing of linkage is the bearing with dynamic load,and is immersed in the lubricant-box.If the joint clearance is considered,the research on linkage movement could be very complicated.In this paper,the kinematic characteristics of four-bar beating-up mechanism with joint clearance were studied by analyzing the trace of journal center and the balance of radial,tangential forces,and bearing load.The region of principal vibration and its forming causes were discussed.And the results could interpret the measuring curves of four-bar beating-up mechanism completely.展开更多
The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints.Compared with the method of changing the mobility by physical locking joints,the geometric constrai...The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints.Compared with the method of changing the mobility by physical locking joints,the geometric constraint has good controllability,and the constructed parallel mechanism has more configurations and wider application range.This paper presents a reconfigurable axis(rA)joint inspired and evolved from Rubik’s Cubes,which have a unique feature of geometric and physical constraint of axes of joint.The effectiveness of the rA joint in the construction of the limb is analyzed,resulting in a change in mobility and topology of the parallel mechanism.The rA joint makes the angle among the three axes inside the groove changed arbitrarily.This change in mobility is completed by the case illustrated by a 3(rA)P(rA)reconfigurable parallel mechanism having variable mobility from 1 to 6 and having various special configurations including pure translations,pure rotations.The underlying principle of the metamorphosis of this rA joint is shown by investigating the dependence of the corresponding screw system comprising of line vectors,leading to evolution of the rA joint from two types of spherical joints to three types of variable Hooke joints and one revolute joint.The reconfigurable parallel mechanism alters its topology by rotating or locking the axis of rA joint to turn all limbs into different phases.The prototype of reconfigurable parallel mechanism is manufactured and all configurations are enumerated to verify the validity of the theoretical method by physical experiments.展开更多
Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of wel...Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of welded joint without trailing peening just before fracture are not only few and scattered but also uneven, and the stress mainly concentrates on the poor position welded toes during the tensioning process with the relatively poor mechanical properties of welded joints; When the method of welding with trailing peening is adopted, moiré stripes of welded joint just before fracture are relatively thick and even due to the strengthening welded toes during the welding process, and fracture position transfers from the welded toes to weld, at the same time the mechanical properties of welded joints are improved greatly than conventional welding which can show that the technology of trailing peening is effective to strengthen welded joints of aluminum alloy with high strength.展开更多
Clearance between the moving joints is unavoidable in real working process. At present, many researches are mainly focused on dynamics of plane revolute joint in plane mechanism, but few on dynamics of spatial spheric...Clearance between the moving joints is unavoidable in real working process. At present, many researches are mainly focused on dynamics of plane revolute joint in plane mechanism, but few on dynamics of spatial spherical joint clearance in spatial parallel mechanism. In this paper, a general method is proposed for establishing dynamic equations of spatial parallel mechanism with spatial spherical clearance by Lagrange multiplier method. The kinematic model and contact force model of the spherical joint clearance were established successively. Lagrange multiplier method was used to deduce the dynamics equation of 4 UPS-UPU mechanism with spherical clearance joint systematically. The influence of friction coefficient on dynamics response of 4 UPS-UPU mechanism with spherical clearance joint was analyzed. Non-linear characteristics of clearance joint and moving platform were analyzed by Poincare map, phase diagram, and bifurcation diagram. The results show that variation of friction coefficient and clearance value had little effect on stability of the mechanism, but the chaotic phenomenon was found at spherical clearance joint. The research has theoretical guiding significance for improving the dynamic performance and avoiding of chaos of parallel mechanisms including spherical joint clearance.展开更多
The main purpose of this paper is to provide a summarized general guideline to aid decision making of choosing the type of fatigue analysis approach,best suited for modelling and evaluating high-cycle fatigue damage i...The main purpose of this paper is to provide a summarized general guideline to aid decision making of choosing the type of fatigue analysis approach,best suited for modelling and evaluating high-cycle fatigue damage in welded structural joints.It describes how addition of stress concentration and stress direction information into fatigue assessment methodology affect simulated fatigue damage accumulation results and when it is beneficial or necessary to use a particular fatigue damage estimation approach.The focus is on stress-life curve based approaches,particularly when deciding between variants of nominal,hot-spot or multiaxial fatigue assessment approaches for evaluating fatigue damage within welded joint structures.Evaluation is illustrated through application of proposed methodology to choose and perform fatigue assessment for a non-conventional load-bearing tubular joint structure within a floating lemniscate crane upper arm,which has been observed of being prone to aggressive crack propagation within its welds.Damage within the structure is estimated using two non-optimal fatigue analysis approaches to verify applicability of proposed selection methodology.Results are then summarized through comparative assessment and findings are discussed based on what leads to result changes within each fatigue damage analysis approach.展开更多
基金supported by the BRAVE Agile Investment from the PNNL
文摘Background:Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations,such as firefighting,law enforcement,military,and sports.A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment.Methods:To study regulatory processes in intense physical activity simulating real-life conditions,we performed a multi-omics analysis of 3 biofluids(blood plasma,urine,and saliva)collected from 11 wildland firefighters before and after a 45 min,intense exercise regimen.Omics profiles post-vs.pre-exercise were compared by Student’s t-test followed by pathway analysis and comparison between the different omics modalities.Results:Our multi-omics analysis identified and quantified 3835 proteins,730 lipids and 182 metabolites combining the 3 different types of samples.The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands.The urine analysis showed a strong,concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites,reabsorption of nutrients and maintenance of fluid balance.In saliva,we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides.A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection.Conclusions:This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility,suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.
基金supported by the National Key R&D Program(No.2022YFA1602201)。
文摘This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.
文摘KK tubular joints are used to build jacket-type offshore structures. These joints are mostly made up of structural steel. These joints can withstand yield, buckling, and lateral loads depending on the structure’s design and environment. In this study, the Finite Element Model of the KK-type tubular joint has been created, and analysis has been performed under static loading using the Static Structural analysis system of ANSYS 19.2 commercial software and structural mechanics module of COMSOL Multiphysics. The KK tubular model is analyzed under compressive load conditions, and the resulting stress, strain, and deformation values are tabulated in both graphical and tabular form. This study includes a comparison of the outcomes from both commercial software. The results highlight that maximum stress, strain, and deformation values decrease as joint thickness increases. This study holds significant relevance in advancing the understanding of tubular KK joints and their response to compressive loading. The insights derived from the analysis have the potential to contribute to the development of more robust and reliable tubular KK joints in various engineering and structural applications. .
文摘BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.
文摘Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. Methods: Thirty-two late-stage elderly individuals were evaluated for knee pain during rest, walking, and program exercises, with and without TENS. Gait analysis was performed using an IoT-based gait analysis device to examine the effects of TENS-induced analgesia on gait. Results: TENS significantly reduced knee pain during rest, walking, and programmed exercises, with the greatest analgesic effect observed during walking. The greater the knee pain without TENS, the more significant the analgesic effect of TENS. A comparison of gait parameters revealed a significant difference only in the gait cycle time, with a trend towards faster walking with TENS;however, the effect was limited. Conclusion: TENS effectively relieves knee pain in late-stage elderly individuals and can be safely applied during exercise. Pain management using TENS provides important insights into the implementation of exercise therapy in this age group.
基金the support from National Nature Science Foundation of China (50535050).
文摘Four different structural models of artificial joints were developed and the finite element method (FEM) was employed to investigate their mechanical characteristics under static and dynamic conditions. The materials used in the FEM calculation were ultra-high molecular weight polyethylene (UHMWPE), 316L stainless steel, CoCrMo alloy and Ti6A14V alloy. The stress distribution, strain, and elastic deformation under static and dynamic conditions were obtained. Analysis and comparison of the ~alculation results of different models were conducted. It is shown that with the same parameters the model of a metallic femur head covered with an artificial cartilage layer is more similar to the structure of the natural human joint and its mechanical characteristics are the best of the four models.
基金Supported by National Natural Science Foundation of China(Grant No.51305039)Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110005120004)+1 种基金Fundamental Research Funds for the Central Universities,China(Grant No.2014PTB-00-01)National Basic Research Program of China(973 Program,Grant No.2013CB733000)
文摘Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.
文摘Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
基金This research was supported by the National Natural Science Foundation of China to Xu Chenwu (39900080, 30270724 and 30370758).
文摘Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quantitative traits, which include major gene detection and its effect and variation estimation. The effect and variation of major gene are estimated by the maximum likelihood method implemented via expectation-maximization (EM) algorithm. Major gene is tested with the likelihood ratio (LR) test statistic. Extensive simulation studies showed that joint analysis not only increases the statistical power of major gene detection but also improves the precision and accuracy of major gene effect estimates. An example of the plant height and the number of tiller of F2 population in rice cross Duonieai x Zhonghua 11 was used in the illustration. The results indicated that the genetic difference of these two traits in this cross refers to only one pleiotropic major gene. The additive effect and dominance effect of the major gene are estimated as -21.3 and 40.6 cm on plant height, and 22.7 and -25.3 on number of tiller, respectively. The major gene shows overdominance for plant height and close to complete dominance for number of tillers.
文摘AIM To analyze how various implants placement variables affect sacroiliac(SI) joint range of motion. METHODS An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants(iF use Implant System~?). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. RESULTS Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion(flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation(9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of(8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively,when compared with the 3 implant model.CONCLUSION Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.
基金Sponsored by the Ministerial Level Foundation(40402020105)
文摘A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among these models, the coupled bolt model provides the best accurate responses compared with the experimental results. The contact bolt model shows the best effectiveness and usefulness in view of operational time. The bolt models proposed in this study are adopted for a dynamic characteristic analysis of a large diesel engine consisting of several parts which are connected by many bolts. The dynamic behavior of the entire engine structure was investigated by experiment. The coupled bolt model and the contact bolt model were applied to model the assembly of engine with high preload. The experimental results are in good agreement with the finite element method (FEM) results. Compared with the other models, the contact bolt model presented in this paper is more effective and useful in view of operational time and experience of analysts.
文摘The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake records are applied to a structure at successively increasing intensity levels,which causes the structure to shift from the elastic state into the inelastic state and finally into collapse.In this way,the limit-states and capacity of a structure can be determined.In the present research,the IDA of a concrete gravity dam considering a nonlinear concrete behavior,and sliding planes within the dam body and at the dam-foundation interface,is performed.The influence of the friction angle and lift joint slope on the response parameters are investigated and the various limit-states of the dam are recognized.It is observed that by introducing a lift joint,the tensile damage can be avoided for the dam structure.The lift joint sliding is essentially independent of the base joint friction angle and the upper ligament over the inclined lift joint slides into the upstream direction in strong earthquakes.
基金Project(1212010071012) supported by Guangdong Pangxidong Mineral Prospect Investigation, ChinaProject(41004051) supported by the National Natural Science Foundation of ChinaProject ([2007]038-01-18) supported by Nationwide Mineral Resource Potential Evaluation Projects of Ministry of Land and Resources, China
文摘Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km 2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant No. 2008AA09A105-04)
文摘Stress Joint (SJ) plays a key role in the Top Tensioned Riser (TTR) system for deep water engineering. A preliminary design method of tapered SJ is proposed in the paper, which could help designers obtain accurate design data. After a further sensitive analysis is carried out, the related parameters choice and control methods are recommended in the engineering practice. By taking the extreme environment conditions into consideration, the effects of bending stress reduction and curve control are analyzed, and the 3-D FE models are established by ABQOUS for numerical evaluation to verify the correctness of design results. At last, dynamic analysis and fatigue analysis, based on actual project, are carried out with designed stress joint. The analysis results prove the feasibility and guidance of this method in the practical engineering applications.
基金Project 50639100 supported by the National Natural Science Foundation of China
文摘The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and dis-placement fields under axisymmetrical and asymmetric stress conditions. For the same rock masses and under axisym-metrical stress conditions,the radius of the plastic zone in terms of Hoek-Brown criterion is generally an approximation of the radius in terms of the Mohr-Coulomb criterion. The radius in terms of the Hoek-Brown criterion is larger under low stress conditions. For poor quality rock masses (GSI<25),measures (such as grouting,setting rock bolts,etc.) that improve the GSI of rock masses are effective in improving the stability of tunnels. It is not advisable to improve the sta-bility of the tunnels by providing a small support resistance p through shotcrete,except for very poor quality jointed rock masses. Without reference to the quality of the rock mass,the disturbance factor D should not less than 0.5. Meas-ures which disturb rock masses during tunnel construction should be taken carefully when the tunnel depth increases.
文摘For the four-bar beating-up mechanism of air-jet loom,the plain bearing of linkage is the bearing with dynamic load,and is immersed in the lubricant-box.If the joint clearance is considered,the research on linkage movement could be very complicated.In this paper,the kinematic characteristics of four-bar beating-up mechanism with joint clearance were studied by analyzing the trace of journal center and the balance of radial,tangential forces,and bearing load.The region of principal vibration and its forming causes were discussed.And the results could interpret the measuring curves of four-bar beating-up mechanism completely.
基金Supported by National Natural Science Foundation of China(Grant No.51775052)Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2019JM-181)Beijing Municipal Key Laboratory of Spaceground Interconnection and Convergence of China.
文摘The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints.Compared with the method of changing the mobility by physical locking joints,the geometric constraint has good controllability,and the constructed parallel mechanism has more configurations and wider application range.This paper presents a reconfigurable axis(rA)joint inspired and evolved from Rubik’s Cubes,which have a unique feature of geometric and physical constraint of axes of joint.The effectiveness of the rA joint in the construction of the limb is analyzed,resulting in a change in mobility and topology of the parallel mechanism.The rA joint makes the angle among the three axes inside the groove changed arbitrarily.This change in mobility is completed by the case illustrated by a 3(rA)P(rA)reconfigurable parallel mechanism having variable mobility from 1 to 6 and having various special configurations including pure translations,pure rotations.The underlying principle of the metamorphosis of this rA joint is shown by investigating the dependence of the corresponding screw system comprising of line vectors,leading to evolution of the rA joint from two types of spherical joints to three types of variable Hooke joints and one revolute joint.The reconfigurable parallel mechanism alters its topology by rotating or locking the axis of rA joint to turn all limbs into different phases.The prototype of reconfigurable parallel mechanism is manufactured and all configurations are enumerated to verify the validity of the theoretical method by physical experiments.
文摘Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of welded joint without trailing peening just before fracture are not only few and scattered but also uneven, and the stress mainly concentrates on the poor position welded toes during the tensioning process with the relatively poor mechanical properties of welded joints; When the method of welding with trailing peening is adopted, moiré stripes of welded joint just before fracture are relatively thick and even due to the strengthening welded toes during the welding process, and fracture position transfers from the welded toes to weld, at the same time the mechanical properties of welded joints are improved greatly than conventional welding which can show that the technology of trailing peening is effective to strengthen welded joints of aluminum alloy with high strength.
基金Sponsored by the Natural Science Foundation of Shandong Province(Grand No.ZR2017MEE066)the Shandong Key Research and Development Public Welfare Program(2019GGX104001)。
文摘Clearance between the moving joints is unavoidable in real working process. At present, many researches are mainly focused on dynamics of plane revolute joint in plane mechanism, but few on dynamics of spatial spherical joint clearance in spatial parallel mechanism. In this paper, a general method is proposed for establishing dynamic equations of spatial parallel mechanism with spatial spherical clearance by Lagrange multiplier method. The kinematic model and contact force model of the spherical joint clearance were established successively. Lagrange multiplier method was used to deduce the dynamics equation of 4 UPS-UPU mechanism with spherical clearance joint systematically. The influence of friction coefficient on dynamics response of 4 UPS-UPU mechanism with spherical clearance joint was analyzed. Non-linear characteristics of clearance joint and moving platform were analyzed by Poincare map, phase diagram, and bifurcation diagram. The results show that variation of friction coefficient and clearance value had little effect on stability of the mechanism, but the chaotic phenomenon was found at spherical clearance joint. The research has theoretical guiding significance for improving the dynamic performance and avoiding of chaos of parallel mechanisms including spherical joint clearance.
文摘The main purpose of this paper is to provide a summarized general guideline to aid decision making of choosing the type of fatigue analysis approach,best suited for modelling and evaluating high-cycle fatigue damage in welded structural joints.It describes how addition of stress concentration and stress direction information into fatigue assessment methodology affect simulated fatigue damage accumulation results and when it is beneficial or necessary to use a particular fatigue damage estimation approach.The focus is on stress-life curve based approaches,particularly when deciding between variants of nominal,hot-spot or multiaxial fatigue assessment approaches for evaluating fatigue damage within welded joint structures.Evaluation is illustrated through application of proposed methodology to choose and perform fatigue assessment for a non-conventional load-bearing tubular joint structure within a floating lemniscate crane upper arm,which has been observed of being prone to aggressive crack propagation within its welds.Damage within the structure is estimated using two non-optimal fatigue analysis approaches to verify applicability of proposed selection methodology.Results are then summarized through comparative assessment and findings are discussed based on what leads to result changes within each fatigue damage analysis approach.