This work investigates one immune optimization algorithm in uncertain environments, solving linear or nonlinear joint chance-constrained programming with a general distribution of the random vector. In this algorithm,...This work investigates one immune optimization algorithm in uncertain environments, solving linear or nonlinear joint chance-constrained programming with a general distribution of the random vector. In this algorithm, an a priori lower bound estimate is developed to deal with one joint chance constraint, while the scheme of adaptive sampling is designed to make empirically better antibodies in the current population acquire larger sample sizes in terms of our sample-allocation rule. Relying upon several simplified immune metaphors in the immune system, we design two immune operators of dynamic proliferation and adaptive mutation. The first picks up those diverse antibodies to achieve proliferation according to a dynamical suppression radius index, which can ensure empirically potential antibodies more clones, and reduce noisy influence to the optimized quality, and the second is a module of genetic diversity, which exploits those valuable regions and finds those diverse and excellent antibodies. Theoretically, the proposed approach is demonstrated to be convergent. Experimentally, the statistical results show that the approach can obtain satisfactory performances including the optimized quality, noisy suppression and efficiency.展开更多
In the context of internationalization,China-UK Joint Education Programs are receiving increasing attention from universities.Based on the difficulties faced in China-UK Joint Education Program,this paper adopts a que...In the context of internationalization,China-UK Joint Education Programs are receiving increasing attention from universities.Based on the difficulties faced in China-UK Joint Education Program,this paper adopts a questionnaire survey method to study the learning effectiveness of students majoring in digital media technology in the China-UK Joint Education Program at Guangxi University of Finance and Economics,focusing on four aspects:learning materials,learning content,teacher conditions,and student learning outcomes.The research analysis in this paper not only provides strong support for the construction of China-UK Joint Education Program but also offers references for other China-UK Joint Education Programs.展开更多
Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems ranging from portfolio selection to water resource management may be cast into this framework. Severe ...Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems ranging from portfolio selection to water resource management may be cast into this framework. Severe limitations on objectivity are encountered in this field because of the simultaneous presence of randomness and conflicting goals. In such a turbulent environment, the mainstay of rational choice cannot hold and it is virtually impossible to provide a truly scientific foundation for an optimal decision. In this paper, we resort to the bounded rationality principle to introduce satisfying solution for multiobjective stochastic linear programming problems. These solutions that are based on the chance-constrained paradigm are characterized under the assumption of normality of involved random variables. Ways for singling out such solutions are also discussed and a numerical example provided for the sake of illustration.展开更多
Geological surface modeling is typically based on seismic data, well data, and models of regional geology. However, structural interpretation of these data is error-prone, especially in the absence of structural morph...Geological surface modeling is typically based on seismic data, well data, and models of regional geology. However, structural interpretation of these data is error-prone, especially in the absence of structural morphology information, Existing geological surface models suffer from high levels of uncertainty, which exposes oil and gas exploration and development to additional risk. In this paper, we achieve a reconstruction of the uncertainties associated with a geological surface using chance-constrained programming based on multisource data. We also quantifi ed the uncertainty of the modeling data and added a disturbance term to the objective function. Finally, we verifi ed the applicability of the method using both synthetic and real fault data. We found that the reconstructed geological models met geological rules and reduced the reconstruction uncertainty.展开更多
A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncert...A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncertainty in the source-receptor-specific transfer coefficients. Based on the calculation of SO2 and sulfate average residence time for Liuzhou City, a sulfur deposition model has been developed and the distribution of transfer coefficients have been found to be approximately log-normal. Sulfur removal minimization of the model shows that the abatement of emission sources in the city is more effective, while control cost optimization provides the lowest cost programmes for source abatement at each allowable deposition limit under varied environmental risk levels. Finally a practicable programme is recommended.展开更多
Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink...Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.展开更多
In 2024,the Chinese Meridian Project(CMP)completed its construction,deploying 282 instruments across 31 stations.This achievement not only provides a robust foundation but also serves as a reference template for the I...In 2024,the Chinese Meridian Project(CMP)completed its construction,deploying 282 instruments across 31 stations.This achievement not only provides a robust foundation but also serves as a reference template for the International Meridian Circle Program(IMCP).The IMCP aims to integrate and establish a comprehensive network of ground-based monitoring stations designed to track the propagation of space weather events from the Sun to Earth.Additionally,it monitors various disturbances generated within the Earth system that impact geospace.Over the past two years,significant progress has been made on the IMCP.In particular,the second phase of construction for the China-Brazil Joint Laboratory for Space Weather has been completed,and the North Pole and Southeast Asia networks are under active construction.The 2024 IMCP joint observation campaign was successfully conducted.To facilitate these developments,the scientific program committee of IMCP was established,following the success of 2023 IMCP workshop and the space weather school,which was co-hosted with the Asia-Pacific Space Cooperation Organization(APSCO)and sponsored by Chinese Academy of Sciences(CAS)and Scientific Committee on Solar-Terrestrial Physics(SCOSTEP).Preparations are now underway for the 2024 workshop in collaboration with the National Institute for Space Research(INPE)in Brazil.展开更多
The joint beamforming design challenge for dual-functional radar-communication systems is addressed in this paper.The base station in these systems is tasked with simultaneously sending shared signals for both multi-u...The joint beamforming design challenge for dual-functional radar-communication systems is addressed in this paper.The base station in these systems is tasked with simultaneously sending shared signals for both multi-user communication and target sensing.The primary objective is to maximize the sum rate of multi-user communication,while also ensuring sufficient beampattern gain at particular angles that are of interest for sensing,all within the constraints of the transmit power budget.To tackle this complex non-convex problem,an effective algorithm that iteratively optimizes the joint beamformers is developed.This algorithm leverages the techniques of fractional programming and semidefinite relaxation to achieve its goals.The numerical results confirm the effectiveness of the proposed algorithm.展开更多
The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavement...The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.展开更多
Large-scale genetic population used for genetic breeding researches covers a large area in the field experiment,and the effect of local control would be gradually weakened.The block in replication(BIR)design is suitab...Large-scale genetic population used for genetic breeding researches covers a large area in the field experiment,and the effect of local control would be gradually weakened.The block in replication(BIR)design is suitable for large population,which is applied to the field experiment of genetic population.The statistical methods of analysis of variance(ANOVA)and heritability estimation in single and multiple environments were derived and implemented using the statistical analysis system(SAS)program for the analysis of BIR.As a work example,a comparison of statistical analysis between BIR design and the completely random block(CRB)design were conducted for the protein content from a panel containing 455 soybean germplasms.The results indicated the different estimates of average heritability in multiple environments.The research results provided technical support for the application of BIR design in genetics and breeding studies.展开更多
The purpose of this paper is to combine the estimation of output price risk and positive mathematical programming (PMP). It reconciles the risk programming presented by Freund with a consistent estimate of the constan...The purpose of this paper is to combine the estimation of output price risk and positive mathematical programming (PMP). It reconciles the risk programming presented by Freund with a consistent estimate of the constant absolute risk aversion (CARA) coefficient. It extends the PMP approach to calibration of realized production outputs and observed input prices. The results of this specification include 1) uniqueness of the calibrating solution, 2) elimination of the tautological calibration constraints typical of the original PMP procedure, 3) equivalence between a phase I calibrating solution and a solution obtained by combining phase I and phase II of the traditional PMP procedure. In this extended PMP framework, the cost function specification involves output quantities and input prices—contrary to the myopic cost function of the traditional PMP approach. This extension allows for a phase III calibrating model that replaces the usual linear technology with relations corresponding to Shephard lemma (in the primal constraints) and the marginal cost function (in the dual constraints). An empirical example with a sample of farms producing four crops illustrates the novel procedure.展开更多
Translational medicine is a comprehensive discipline that aims to convert laboratory research results into products and technology for clinical application using modern molecular biological techniques, to improve our ...Translational medicine is a comprehensive discipline that aims to convert laboratory research results into products and technology for clinical application using modern molecular biological techniques, to improve our understanding of the human body and disease and to optimize laboratory design for clinical observation and analysis for basic research. Its ultimate goal is improving holistic medicine and helping patients solve their health problems. Translational medicine includes two processes: bench to bedside and bedside to bench, known as B-to-B processes. The first B-to-B (bench to bedside) refers to the application of results of the laboratory to clinical use as a medical product or a diagnosis and treatment technology. The second B-to-B (bedside to bench) describes the process by which clinical observation and analysis provides ideas and guidance for experiment design for basic medical research. The two processes complement each other and constitute the two-way cycle of translational medicine. Translational medicine can be applied to clinical disease detection in the form of new biomarkers and can accelerate drug discovery. In recent years, with the biotechnology, increasing rapid development of outcomes of research on molecular pathogenesis can be directly applied to clinical theraDv.展开更多
To address uncertainty as well as transient stability constraints simultaneously in the preventive control of windfarm systems, a novel three-stage optimization strategy is established in this paper. In the first stag...To address uncertainty as well as transient stability constraints simultaneously in the preventive control of windfarm systems, a novel three-stage optimization strategy is established in this paper. In the first stage, the probabilisticmulti-objective particle swarm optimization based on the point estimate method is employed to cope with thestochastic factors. The transient security region of the system is accurately ensured by the interior point methodin the second stage. Finally, the verification of the final optimal objectives and satisfied constraints are enforcedin the last stage. Furthermore, the proposed strategy is a general framework that can combine other optimizationalgorithms. The proposed methodology is tested on the modified WSCC 9-bus system and the New England 39-bussystem. The results verify the feasibility of the method.展开更多
基金supported by the National Natural Science Foundation of China(No.61065010)the Doctoral Fund of Ministry of Education of China(No.20125201110003)
文摘This work investigates one immune optimization algorithm in uncertain environments, solving linear or nonlinear joint chance-constrained programming with a general distribution of the random vector. In this algorithm, an a priori lower bound estimate is developed to deal with one joint chance constraint, while the scheme of adaptive sampling is designed to make empirically better antibodies in the current population acquire larger sample sizes in terms of our sample-allocation rule. Relying upon several simplified immune metaphors in the immune system, we design two immune operators of dynamic proliferation and adaptive mutation. The first picks up those diverse antibodies to achieve proliferation according to a dynamical suppression radius index, which can ensure empirically potential antibodies more clones, and reduce noisy influence to the optimized quality, and the second is a module of genetic diversity, which exploits those valuable regions and finds those diverse and excellent antibodies. Theoretically, the proposed approach is demonstrated to be convergent. Experimentally, the statistical results show that the approach can obtain satisfactory performances including the optimized quality, noisy suppression and efficiency.
基金Guangxi Key Laboratory of Financial Big Data Fund Project(Guikejizi[2021]No.5)Research on the Innovation of Teaching Models for Foreign Professional Courses in China-UK Joint Education Under the Background of Internationalization-Taking Guangxi University of Finance and Economics as an Example(2023XJJG26)Exploration and Practice of Digital Media Technology Talent Training Models in the Context of New Productive Forces(XGK202423)。
文摘In the context of internationalization,China-UK Joint Education Programs are receiving increasing attention from universities.Based on the difficulties faced in China-UK Joint Education Program,this paper adopts a questionnaire survey method to study the learning effectiveness of students majoring in digital media technology in the China-UK Joint Education Program at Guangxi University of Finance and Economics,focusing on four aspects:learning materials,learning content,teacher conditions,and student learning outcomes.The research analysis in this paper not only provides strong support for the construction of China-UK Joint Education Program but also offers references for other China-UK Joint Education Programs.
文摘Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems ranging from portfolio selection to water resource management may be cast into this framework. Severe limitations on objectivity are encountered in this field because of the simultaneous presence of randomness and conflicting goals. In such a turbulent environment, the mainstay of rational choice cannot hold and it is virtually impossible to provide a truly scientific foundation for an optimal decision. In this paper, we resort to the bounded rationality principle to introduce satisfying solution for multiobjective stochastic linear programming problems. These solutions that are based on the chance-constrained paradigm are characterized under the assumption of normality of involved random variables. Ways for singling out such solutions are also discussed and a numerical example provided for the sake of illustration.
基金by National Science and Technology Major Project(Grant No.2017ZX05018004004)the National Natural Science Foundation of China (No.U1562218 & 41604107).
文摘Geological surface modeling is typically based on seismic data, well data, and models of regional geology. However, structural interpretation of these data is error-prone, especially in the absence of structural morphology information, Existing geological surface models suffer from high levels of uncertainty, which exposes oil and gas exploration and development to additional risk. In this paper, we achieve a reconstruction of the uncertainties associated with a geological surface using chance-constrained programming based on multisource data. We also quantifi ed the uncertainty of the modeling data and added a disturbance term to the objective function. Finally, we verifi ed the applicability of the method using both synthetic and real fault data. We found that the reconstructed geological models met geological rules and reduced the reconstruction uncertainty.
文摘A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncertainty in the source-receptor-specific transfer coefficients. Based on the calculation of SO2 and sulfate average residence time for Liuzhou City, a sulfur deposition model has been developed and the distribution of transfer coefficients have been found to be approximately log-normal. Sulfur removal minimization of the model shows that the abatement of emission sources in the city is more effective, while control cost optimization provides the lowest cost programmes for source abatement at each allowable deposition limit under varied environmental risk levels. Finally a practicable programme is recommended.
文摘Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.
基金Supported by International Meridian Circle Program Headquarters,China-Brazil Joint Laboratory for Space Weather(Y42347A99S)。
文摘In 2024,the Chinese Meridian Project(CMP)completed its construction,deploying 282 instruments across 31 stations.This achievement not only provides a robust foundation but also serves as a reference template for the International Meridian Circle Program(IMCP).The IMCP aims to integrate and establish a comprehensive network of ground-based monitoring stations designed to track the propagation of space weather events from the Sun to Earth.Additionally,it monitors various disturbances generated within the Earth system that impact geospace.Over the past two years,significant progress has been made on the IMCP.In particular,the second phase of construction for the China-Brazil Joint Laboratory for Space Weather has been completed,and the North Pole and Southeast Asia networks are under active construction.The 2024 IMCP joint observation campaign was successfully conducted.To facilitate these developments,the scientific program committee of IMCP was established,following the success of 2023 IMCP workshop and the space weather school,which was co-hosted with the Asia-Pacific Space Cooperation Organization(APSCO)and sponsored by Chinese Academy of Sciences(CAS)and Scientific Committee on Solar-Terrestrial Physics(SCOSTEP).Preparations are now underway for the 2024 workshop in collaboration with the National Institute for Space Research(INPE)in Brazil.
基金supported in part by the National Natural Science Foundation of China under Grant No.62201266in part by the Natural Science Foundation of Jiangsu Province under Grant No.BK20210335.
文摘The joint beamforming design challenge for dual-functional radar-communication systems is addressed in this paper.The base station in these systems is tasked with simultaneously sending shared signals for both multi-user communication and target sensing.The primary objective is to maximize the sum rate of multi-user communication,while also ensuring sufficient beampattern gain at particular angles that are of interest for sensing,all within the constraints of the transmit power budget.To tackle this complex non-convex problem,an effective algorithm that iteratively optimizes the joint beamformers is developed.This algorithm leverages the techniques of fractional programming and semidefinite relaxation to achieve its goals.The numerical results confirm the effectiveness of the proposed algorithm.
基金the financial support from the University of Pittsburgh Anthony Gill Chair and the Impactful Resilient Infrastructure Science and Engineering Consortium(IRISE)at University of Pittsburgh.
文摘The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.
基金Supported by Key Research and Development Project of Heilongjiang Province(GA21B009-6)Heilongjiang Province Natural Science Foundation(C2015009)。
文摘Large-scale genetic population used for genetic breeding researches covers a large area in the field experiment,and the effect of local control would be gradually weakened.The block in replication(BIR)design is suitable for large population,which is applied to the field experiment of genetic population.The statistical methods of analysis of variance(ANOVA)and heritability estimation in single and multiple environments were derived and implemented using the statistical analysis system(SAS)program for the analysis of BIR.As a work example,a comparison of statistical analysis between BIR design and the completely random block(CRB)design were conducted for the protein content from a panel containing 455 soybean germplasms.The results indicated the different estimates of average heritability in multiple environments.The research results provided technical support for the application of BIR design in genetics and breeding studies.
文摘The purpose of this paper is to combine the estimation of output price risk and positive mathematical programming (PMP). It reconciles the risk programming presented by Freund with a consistent estimate of the constant absolute risk aversion (CARA) coefficient. It extends the PMP approach to calibration of realized production outputs and observed input prices. The results of this specification include 1) uniqueness of the calibrating solution, 2) elimination of the tautological calibration constraints typical of the original PMP procedure, 3) equivalence between a phase I calibrating solution and a solution obtained by combining phase I and phase II of the traditional PMP procedure. In this extended PMP framework, the cost function specification involves output quantities and input prices—contrary to the myopic cost function of the traditional PMP approach. This extension allows for a phase III calibrating model that replaces the usual linear technology with relations corresponding to Shephard lemma (in the primal constraints) and the marginal cost function (in the dual constraints). An empirical example with a sample of farms producing four crops illustrates the novel procedure.
文摘Translational medicine is a comprehensive discipline that aims to convert laboratory research results into products and technology for clinical application using modern molecular biological techniques, to improve our understanding of the human body and disease and to optimize laboratory design for clinical observation and analysis for basic research. Its ultimate goal is improving holistic medicine and helping patients solve their health problems. Translational medicine includes two processes: bench to bedside and bedside to bench, known as B-to-B processes. The first B-to-B (bench to bedside) refers to the application of results of the laboratory to clinical use as a medical product or a diagnosis and treatment technology. The second B-to-B (bedside to bench) describes the process by which clinical observation and analysis provides ideas and guidance for experiment design for basic medical research. The two processes complement each other and constitute the two-way cycle of translational medicine. Translational medicine can be applied to clinical disease detection in the form of new biomarkers and can accelerate drug discovery. In recent years, with the biotechnology, increasing rapid development of outcomes of research on molecular pathogenesis can be directly applied to clinical theraDv.
文摘To address uncertainty as well as transient stability constraints simultaneously in the preventive control of windfarm systems, a novel three-stage optimization strategy is established in this paper. In the first stage, the probabilisticmulti-objective particle swarm optimization based on the point estimate method is employed to cope with thestochastic factors. The transient security region of the system is accurately ensured by the interior point methodin the second stage. Finally, the verification of the final optimal objectives and satisfied constraints are enforcedin the last stage. Furthermore, the proposed strategy is a general framework that can combine other optimizationalgorithms. The proposed methodology is tested on the modified WSCC 9-bus system and the New England 39-bussystem. The results verify the feasibility of the method.