This paper addresses the problem of joint tracking and classification(JTC) of a single extended target with a complex shape. To describe this complex shape, the spatial extent state is first modeled by star-convex sha...This paper addresses the problem of joint tracking and classification(JTC) of a single extended target with a complex shape. To describe this complex shape, the spatial extent state is first modeled by star-convex shape via a random hypersurface model(RHM), and then used as feature information for target classification. The target state is modeled by two vectors to alleviate the influence of the high-dimensional state space and the severely nonlinear observation model on target state estimation, while the Euclidean distance metric of the normalized Fourier descriptors is applied to obtain the analytical solution of the updated class probability. Consequently, the resulting method is called the "JTC-RHM method." Besides, the proposed JTC-RHM is integrated into a Bernoulli filter framework to solve the JTC of a single extended target in the presence of detection uncertainty and clutter, resulting in a JTC-RHM-Ber filter. Specifically, the recursive expressions of this filter are derived. Simulations indicate that:(1) the proposed JTC-RHM method can classify the targets with complex shapes and similar sizes more correctly, compared with the JTC method based on the random matrix model,(2) the proposed method performs better in target state estimation than the star-convex RHM based extended target tracking method,(3) the proposed JTC-RHM-Ber filter has a promising performance in state detection and estimation, and can achieve target classification correctly.展开更多
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How...Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.展开更多
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We develope...Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods.展开更多
In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections...In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.展开更多
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too...In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.展开更多
There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods...There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 61471370)。
文摘This paper addresses the problem of joint tracking and classification(JTC) of a single extended target with a complex shape. To describe this complex shape, the spatial extent state is first modeled by star-convex shape via a random hypersurface model(RHM), and then used as feature information for target classification. The target state is modeled by two vectors to alleviate the influence of the high-dimensional state space and the severely nonlinear observation model on target state estimation, while the Euclidean distance metric of the normalized Fourier descriptors is applied to obtain the analytical solution of the updated class probability. Consequently, the resulting method is called the "JTC-RHM method." Besides, the proposed JTC-RHM is integrated into a Bernoulli filter framework to solve the JTC of a single extended target in the presence of detection uncertainty and clutter, resulting in a JTC-RHM-Ber filter. Specifically, the recursive expressions of this filter are derived. Simulations indicate that:(1) the proposed JTC-RHM method can classify the targets with complex shapes and similar sizes more correctly, compared with the JTC method based on the random matrix model,(2) the proposed method performs better in target state estimation than the star-convex RHM based extended target tracking method,(3) the proposed JTC-RHM-Ber filter has a promising performance in state detection and estimation, and can achieve target classification correctly.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB1600402)National Natural Science Foundation of China(Grant No.52072212)+1 种基金Dongfeng USharing Technology Co.,Ltd.,China Intelli‑gent and Connected Vehicles(Beijing)Research Institute Co.,Ltd.“Shuimu Tsinghua Scholarship”of Tsinghua University of China.
文摘Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
文摘Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods.
基金Project(61101186)supported by the National Natural Science Foundation of China
文摘In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.
基金the Youth Science and Technology Foundection of University of Electronic Science andTechnology of China (JX0622).
文摘In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.
基金National Natural Science Foundation of China(Grant No.61573233)Guangdong Provincial Natural Science Foundation of China(Grant No.2018A0303130188)+1 种基金Guangdong Provincial Science and Technology Special Funds Project of China(Grant No.190805145540361)Special Projects in Key Fields of Colleges and Universities in Guangdong Province of China(Grant No.2020ZDZX2005).
文摘There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model.