Formation and scheduling are the most important decisions in the virtual modular manufacturing system;however,the global performance optimization of the system may be sacrificed via the superposition of two independen...Formation and scheduling are the most important decisions in the virtual modular manufacturing system;however,the global performance optimization of the system may be sacrificed via the superposition of two independent decision-making results.The joint decision of formation and scheduling is very important for system design.Complex and discrete manufacturing enterprises such as shipbuilding and aerospace often comprise multiple tasks,processes,and parallel machines,resulting in complex routes.The queuing time of parts in front of machines may account for 90%of the production cycle time.This study established a weighted allocation model of a formation-scheduling joint decision problem considering queuing time in system.To solve this nondeterministic polynomial(NP)problem,an adaptive differential evolution-simulated annealing(ADE-SA)algorithm is proposed.Compared with the standard differential evolution(DE)algorithm,the adaptive mutation factor overcomes the disadvantage that the scale of DE’s differential vector is difficult to control.The selection strategy of the SA algorithm compensates for the deficiency that DE’s greedy strategy may fall into a local optimal solution.The comparison results of four algorithms of a series of random examples demonstrate that the overall performance of ADE-SA is superior to the genetic algorithm,and average iteration,maximum completion time,and move time are 24%,11%,and 7%lower than the average of other three algorithms,respectively.The method can generate the joint decision-making scheme with better overall performance,and effectively identify production bottlenecks through quantitative analysis of queuing time.展开更多
Neutrosophic theory can effectively and reasonably express indeterminate,inconsistent,and incomplete information.Since Smarandache proposed the neutrosophic theory in 1998,neutrosophic theory and related research have...Neutrosophic theory can effectively and reasonably express indeterminate,inconsistent,and incomplete information.Since Smarandache proposed the neutrosophic theory in 1998,neutrosophic theory and related research have been developed and applied to many important fields.Indeterminacy and fuzziness are one of the main research issues in the field of civil engineering.Therefore,the neutrosophic theory is very suitable for modeling and applications of civil engineering fields.This review paper mainly describes the recent developments and applications of neutrosophic theory in four important research areas of civil engineering:the neutrosophic decision-making theory and applied methods,the neutrosophic evaluation methods and applications of slope stability,the neutrosophic expressions and analyses of rock joint roughness coefficient,and the neutrosophic structural optimization methods and applications.In terms of these research achievements in the four areas of civil engineering,the neutrosophic theory demonstrates its advantages in dealing with the indeterminate and inconsistent issues in civil engineering and the effectiveness and practicability of existing applied methods.In the future work,the existing research results will be further improved and extended in civil engineering problems.In addition,the neutrosophic theory will also have better application prospects in other fields of civil engineering.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.:71972090).
文摘Formation and scheduling are the most important decisions in the virtual modular manufacturing system;however,the global performance optimization of the system may be sacrificed via the superposition of two independent decision-making results.The joint decision of formation and scheduling is very important for system design.Complex and discrete manufacturing enterprises such as shipbuilding and aerospace often comprise multiple tasks,processes,and parallel machines,resulting in complex routes.The queuing time of parts in front of machines may account for 90%of the production cycle time.This study established a weighted allocation model of a formation-scheduling joint decision problem considering queuing time in system.To solve this nondeterministic polynomial(NP)problem,an adaptive differential evolution-simulated annealing(ADE-SA)algorithm is proposed.Compared with the standard differential evolution(DE)algorithm,the adaptive mutation factor overcomes the disadvantage that the scale of DE’s differential vector is difficult to control.The selection strategy of the SA algorithm compensates for the deficiency that DE’s greedy strategy may fall into a local optimal solution.The comparison results of four algorithms of a series of random examples demonstrate that the overall performance of ADE-SA is superior to the genetic algorithm,and average iteration,maximum completion time,and move time are 24%,11%,and 7%lower than the average of other three algorithms,respectively.The method can generate the joint decision-making scheme with better overall performance,and effectively identify production bottlenecks through quantitative analysis of queuing time.
文摘Neutrosophic theory can effectively and reasonably express indeterminate,inconsistent,and incomplete information.Since Smarandache proposed the neutrosophic theory in 1998,neutrosophic theory and related research have been developed and applied to many important fields.Indeterminacy and fuzziness are one of the main research issues in the field of civil engineering.Therefore,the neutrosophic theory is very suitable for modeling and applications of civil engineering fields.This review paper mainly describes the recent developments and applications of neutrosophic theory in four important research areas of civil engineering:the neutrosophic decision-making theory and applied methods,the neutrosophic evaluation methods and applications of slope stability,the neutrosophic expressions and analyses of rock joint roughness coefficient,and the neutrosophic structural optimization methods and applications.In terms of these research achievements in the four areas of civil engineering,the neutrosophic theory demonstrates its advantages in dealing with the indeterminate and inconsistent issues in civil engineering and the effectiveness and practicability of existing applied methods.In the future work,the existing research results will be further improved and extended in civil engineering problems.In addition,the neutrosophic theory will also have better application prospects in other fields of civil engineering.