When tunnel boring machines(TBMs)excavate through jointed rock masses,the cutting efficiency is strongly affected by the shear strength of joints,the mechanism of which,however,remains poorly understood.In this study,...When tunnel boring machines(TBMs)excavate through jointed rock masses,the cutting efficiency is strongly affected by the shear strength of joints,the mechanism of which,however,remains poorly understood.In this study,a series of disc-cutter indentation tests were conducted on granite rock mass specimens with different joint shear strengths.During the indentation,the cracking process was recorded by a digital image correlation(DIC)system.The deformation and strength of specimens,cracking behavior,rock breakage mode and cutting efficiency were quantitatively investigated.In addition,to investigate the combined effects of joint shear strength,orientation and spacing on the rock breakage mechanism,numerical rock mass models were established based on a particle flow code PFC2D.Experimental results reveal that the cracking of primary and secondary cracks changes from the mixed shear-tensile to tensile mode in the initial stage,while the joint shear strength does not affect the cracking mode in the subsequent propagation process.The rock breakage mode is classified to an internal block breakage mode,a cross-joint breakage mode and a cutters-dependent breakage mode.The cross-joint breakage mode is optimal for improving the cutting efficiency.Numerical simulation results reveal that the increase in the joint shear strength changes the internal block breakage mode to cross-joint breakage mode for rock masses of particular ranges of joint orientation and spacing.These findings provide basis for improving the TBM cutting efficiency through jointed rock masses.展开更多
In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic char...In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic characteristics and different sizes were selected as samples,and their shear strengths under dry and saturated conditions were measured by direct shear test and compared to those esti-mated by the JRC-JCS model.Comparison results show that for natural rock joints with joint surfaces closely matched,the average relative error of joint shear strength between empirical estimation and direct shear test is 9.9%;the reliability of the empirical estimation of joint shear strength by the JRC-JCS model is good under both dry and saturated conditions if the JRC is determined accounting for directional statistical measurements,scale effect and surface smoothing during shearing.However,for natural rock joints with joint surfaces mismatched,the average relative error of joint shear strength between empirical estimation and direct shear test is 39.9%;the reliability of empirical estimation of joint shear strength by the JRC-JCS model is questionable under both dry and saturated conditions.展开更多
Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has rece...Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.展开更多
The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (S...The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (SAC305)/ Cu solder joints aging at 373, 403, and 438 K. The results show that (Cul-x,Nix)6Sn5 phase forms between the SACBN solder and Cu substrate during soldering. The interracial IMC thickens constantly with the aging time increasing, and the higher the aging temperature, the faster the IMC layer grows. Compared with the SAC305/Cu couple, the SACBN/Cu couple exhibits a lower layer growth coefficient. The activation energies of IMC growth for SACBN/Cu and SAC305/Cu couples are 111.70 and 82.35 kJ/mol, respectively. In general, the shear strength of aged solder joints declines continuously. However, SACBN/Cu solder joints exhibit a better shear strength than SAC305/Cu solder joints.展开更多
Joints shear strength is a critical parameter during the design and construction of geotechnical engineering structures.The prevailing models mostly adopt the form of empirical functions,employing mathematical regress...Joints shear strength is a critical parameter during the design and construction of geotechnical engineering structures.The prevailing models mostly adopt the form of empirical functions,employing mathematical regression techniques to represent experimental data.As an alternative approach,this paper proposes a new integrated intelligent computing paradigm that aims to predict joints shear strength.Five metaheuristic optimization algorithms,including the chameleon swarm algorithm(CSA),slime mold algorithm,transient search optimization algorithm,equilibrium optimizer and social network search algorithm,were employed to enhance the performance of the multilayered perception(MLP)model.Efficiency comparisons were conducted between the proposed CSA-MLP model and twelve classical models,employing statistical indicators such as root mean square error(RMSE),correlation coefficient(R2),mean absolute error(MAE),and variance accounted for(VAF)to evaluate the performance of each model.The sensitivity analysis of parameters that impact joints shear strength was conducted.Finally,the feasibility and limitations of this study were discussed.The results revealed that,in comparison to other models,the CSA-MLP model exhibited the most appropriate performance in terms of R2(0.88),RMSE(0.19),MAE(0.15),and VAF(90.32%)values.The result of sensitivity analysis showed that the normal stress and the joint roughness coefficient were the most critical factors influencing joints shear strength.This paper presented an efficacious attempt toward swift prediction of joints shear strength,thus avoiding the need for costly in-site and laboratory tests.展开更多
Strength of discontinuities with complex structure is an important topic in rock engineering.A large number of studies have shown that fractal is applicable in the description of this discontinuity.Using fractal inter...Strength of discontinuities with complex structure is an important topic in rock engineering.A large number of studies have shown that fractal is applicable in the description of this discontinuity.Using fractal interpolation method for the generation of rock joints,numerical experiments of shear tests of the jointed rock mass model were carried out using FLAC^(3D).The test results show that the real rock joints can be simulated by fractal curves obtained by fractal interpolation.The fractal dimension is an important factor for the characterization of jointed rock mass;test results show that the fractal dimension of rock joints can be related to the equivalent cohesion strength and shear strength of the rock mass.When the fractal dimension of the joint surface is less than critical dimension Dc 1.404,the cohesion strength and shear strength of the rock mass increase as the fractal dimension increases;for larger fractal dimensions,all mechanical parameters decrease as the fractal dimension increases.Joint surfaces with different degrees of roughness were obtained by the fractal interpolation method.Three types of failure modes were observed in the tests:climbing slip failure,climbing gnawing fracture,and non-climbing gnawing fracture.展开更多
Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear be...Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris(Po P). Regular joints were simulated by keeping regular asperity with asperity angles of 15°-15° and 30°-30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°-30° and 15°-45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm×298 mm×125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.展开更多
The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. ...The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. A Pb-riched region with porosity is formed in region of soldering fillet with electroless Sn/Bi. Both the electroless Sn/Bi layer and Pb-riched layer become thicker, which are the reasons why the shear strength of the solder joint with electroless Sn/Bi on aluminum surface is lower than that of electroless Cu, and the higher the thickness of the electroless Sn/Bi layer is, the lower the shear strength of solder joint is.展开更多
-'The effect of interaction of loads on the ultimate static strength of tubular joints of offshore fixed platforms, is a practical problem. But there is still absence of rigorous theory to explain available experi...-'The effect of interaction of loads on the ultimate static strength of tubular joints of offshore fixed platforms, is a practical problem. But there is still absence of rigorous theory to explain available experimental data and empirical criteria for the static strength of tubular joints. The idea of yield at hot spot of tubular joints is introduced in this paper. The interaction equations of plastic capacity for the tubular joints under combined loads (two and three different kinds) are derived. Thereafter the Yura's test data and empirical criteria of ultimate static strength for the tubular joints can be explained. The idea of classification of category of loads in accordance with experimental data and the present theory is suggested. Finally, the improved ultimate capacity equations for tubular joints are recommended. The physical significance of the coefficient of plastic reservation Qp is discussed.展开更多
基金The financial support from the National Natural Science Foundation of China(Grant Nos.41831290,41907167 and 51708354)Natural Science Foundation of Zhejiang Province(Grant No.LTGS23E040001)Natural Science Foundation of Hunan Province(Grant No.2022JJ40521)is greatly appreciated.
文摘When tunnel boring machines(TBMs)excavate through jointed rock masses,the cutting efficiency is strongly affected by the shear strength of joints,the mechanism of which,however,remains poorly understood.In this study,a series of disc-cutter indentation tests were conducted on granite rock mass specimens with different joint shear strengths.During the indentation,the cracking process was recorded by a digital image correlation(DIC)system.The deformation and strength of specimens,cracking behavior,rock breakage mode and cutting efficiency were quantitatively investigated.In addition,to investigate the combined effects of joint shear strength,orientation and spacing on the rock breakage mechanism,numerical rock mass models were established based on a particle flow code PFC2D.Experimental results reveal that the cracking of primary and secondary cracks changes from the mixed shear-tensile to tensile mode in the initial stage,while the joint shear strength does not affect the cracking mode in the subsequent propagation process.The rock breakage mode is classified to an internal block breakage mode,a cross-joint breakage mode and a cutters-dependent breakage mode.The cross-joint breakage mode is optimal for improving the cutting efficiency.Numerical simulation results reveal that the increase in the joint shear strength changes the internal block breakage mode to cross-joint breakage mode for rock masses of particular ranges of joint orientation and spacing.These findings provide basis for improving the TBM cutting efficiency through jointed rock masses.
基金supported by the National Natural Science Foundation of China (Nos. 40672186, 50809059)the Natural Science Foundation of Zhejiang Province (No. Y505008), China
文摘In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic characteristics and different sizes were selected as samples,and their shear strengths under dry and saturated conditions were measured by direct shear test and compared to those esti-mated by the JRC-JCS model.Comparison results show that for natural rock joints with joint surfaces closely matched,the average relative error of joint shear strength between empirical estimation and direct shear test is 9.9%;the reliability of the empirical estimation of joint shear strength by the JRC-JCS model is good under both dry and saturated conditions if the JRC is determined accounting for directional statistical measurements,scale effect and surface smoothing during shearing.However,for natural rock joints with joint surfaces mismatched,the average relative error of joint shear strength between empirical estimation and direct shear test is 39.9%;the reliability of empirical estimation of joint shear strength by the JRC-JCS model is questionable under both dry and saturated conditions.
文摘Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.
基金financially supported by the National Natural Science Foundation of China(No.U0734006)Shenzhen Tongfang Electronic New Material Co.,Ltd
文摘The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (SAC305)/ Cu solder joints aging at 373, 403, and 438 K. The results show that (Cul-x,Nix)6Sn5 phase forms between the SACBN solder and Cu substrate during soldering. The interracial IMC thickens constantly with the aging time increasing, and the higher the aging temperature, the faster the IMC layer grows. Compared with the SAC305/Cu couple, the SACBN/Cu couple exhibits a lower layer growth coefficient. The activation energies of IMC growth for SACBN/Cu and SAC305/Cu couples are 111.70 and 82.35 kJ/mol, respectively. In general, the shear strength of aged solder joints declines continuously. However, SACBN/Cu solder joints exhibit a better shear strength than SAC305/Cu solder joints.
基金This paper gets its funding from Projects(42277175)supported by National Natural Science Foundation of China,Project(2023JJ30657)+2 种基金supported by Hunan Provincial Natural Science Foundation of China and the National Key Research,Hunan Provincial Department of natural resources geological exploration project(BSDZSB43202403)The First National Natural Disaster Comprehensive Risk Survey in Hunan Province(2022-70the National Key Research and Development Program of China-2023 Key Special Project(No.2023YFC2907400).
文摘Joints shear strength is a critical parameter during the design and construction of geotechnical engineering structures.The prevailing models mostly adopt the form of empirical functions,employing mathematical regression techniques to represent experimental data.As an alternative approach,this paper proposes a new integrated intelligent computing paradigm that aims to predict joints shear strength.Five metaheuristic optimization algorithms,including the chameleon swarm algorithm(CSA),slime mold algorithm,transient search optimization algorithm,equilibrium optimizer and social network search algorithm,were employed to enhance the performance of the multilayered perception(MLP)model.Efficiency comparisons were conducted between the proposed CSA-MLP model and twelve classical models,employing statistical indicators such as root mean square error(RMSE),correlation coefficient(R2),mean absolute error(MAE),and variance accounted for(VAF)to evaluate the performance of each model.The sensitivity analysis of parameters that impact joints shear strength was conducted.Finally,the feasibility and limitations of this study were discussed.The results revealed that,in comparison to other models,the CSA-MLP model exhibited the most appropriate performance in terms of R2(0.88),RMSE(0.19),MAE(0.15),and VAF(90.32%)values.The result of sensitivity analysis showed that the normal stress and the joint roughness coefficient were the most critical factors influencing joints shear strength.This paper presented an efficacious attempt toward swift prediction of joints shear strength,thus avoiding the need for costly in-site and laboratory tests.
基金Projects(51479049,51209075)supported by the National Natural Science Foundation of China
文摘Strength of discontinuities with complex structure is an important topic in rock engineering.A large number of studies have shown that fractal is applicable in the description of this discontinuity.Using fractal interpolation method for the generation of rock joints,numerical experiments of shear tests of the jointed rock mass model were carried out using FLAC^(3D).The test results show that the real rock joints can be simulated by fractal curves obtained by fractal interpolation.The fractal dimension is an important factor for the characterization of jointed rock mass;test results show that the fractal dimension of rock joints can be related to the equivalent cohesion strength and shear strength of the rock mass.When the fractal dimension of the joint surface is less than critical dimension Dc 1.404,the cohesion strength and shear strength of the rock mass increase as the fractal dimension increases;for larger fractal dimensions,all mechanical parameters decrease as the fractal dimension increases.Joint surfaces with different degrees of roughness were obtained by the fractal interpolation method.Three types of failure modes were observed in the tests:climbing slip failure,climbing gnawing fracture,and non-climbing gnawing fracture.
基金the financial support of this research from Indian Institute of Technology Delhi
文摘Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris(Po P). Regular joints were simulated by keeping regular asperity with asperity angles of 15°-15° and 30°-30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°-30° and 15°-45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm×298 mm×125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.
文摘The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. A Pb-riched region with porosity is formed in region of soldering fillet with electroless Sn/Bi. Both the electroless Sn/Bi layer and Pb-riched layer become thicker, which are the reasons why the shear strength of the solder joint with electroless Sn/Bi on aluminum surface is lower than that of electroless Cu, and the higher the thickness of the electroless Sn/Bi layer is, the lower the shear strength of solder joint is.
文摘-'The effect of interaction of loads on the ultimate static strength of tubular joints of offshore fixed platforms, is a practical problem. But there is still absence of rigorous theory to explain available experimental data and empirical criteria for the static strength of tubular joints. The idea of yield at hot spot of tubular joints is introduced in this paper. The interaction equations of plastic capacity for the tubular joints under combined loads (two and three different kinds) are derived. Thereafter the Yura's test data and empirical criteria of ultimate static strength for the tubular joints can be explained. The idea of classification of category of loads in accordance with experimental data and the present theory is suggested. Finally, the improved ultimate capacity equations for tubular joints are recommended. The physical significance of the coefficient of plastic reservation Qp is discussed.