Using fixed point methods, we prove the Hyers–Ulam–Rassias stability and superstability of Jordan homomorphisms (Jordan *-homomorphisms), and Jordan derivations (Jordan *-derivations) on Banach algebras (C*-...Using fixed point methods, we prove the Hyers–Ulam–Rassias stability and superstability of Jordan homomorphisms (Jordan *-homomorphisms), and Jordan derivations (Jordan *-derivations) on Banach algebras (C*-algebras) for the generalized Jensen–type functional equationwhere r is a fixed positive real number in (1, ∞).展开更多
In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the se...In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.展开更多
The results of accurate order of uniform approximation and simultaneous approximation in the early work "Jackson Type Theorems on Complex Curves" are improved from Fejer points to disturbed Fejer points in this arti...The results of accurate order of uniform approximation and simultaneous approximation in the early work "Jackson Type Theorems on Complex Curves" are improved from Fejer points to disturbed Fejer points in this article. Furthermore, the stability of convergence of Tn,∈(f,z) with disturbed sample values f(z^*) + Sk are also proved in this article.展开更多
Let A, B be two unital C^*-algebras. By using fixed pint methods, we prove that every almost unital almost linear mapping h : A →B which satisfies h(2^nuy) = h(2^nu)h(y) for all u ∈ U(A), all y ∈ A, and a...Let A, B be two unital C^*-algebras. By using fixed pint methods, we prove that every almost unital almost linear mapping h : A →B which satisfies h(2^nuy) = h(2^nu)h(y) for all u ∈ U(A), all y ∈ A, and all n = 0,1,2,..., is a homomorphism. Also, we establish the generalized Hyers-Ulam-Rassias stability of ,-homomorphisms on unital C^*-algebras.展开更多
In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
文摘Using fixed point methods, we prove the Hyers–Ulam–Rassias stability and superstability of Jordan homomorphisms (Jordan *-homomorphisms), and Jordan derivations (Jordan *-derivations) on Banach algebras (C*-algebras) for the generalized Jensen–type functional equationwhere r is a fixed positive real number in (1, ∞).
文摘In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.
基金Supported by NSF of Henan Province of China(20001110001)
文摘The results of accurate order of uniform approximation and simultaneous approximation in the early work "Jackson Type Theorems on Complex Curves" are improved from Fejer points to disturbed Fejer points in this article. Furthermore, the stability of convergence of Tn,∈(f,z) with disturbed sample values f(z^*) + Sk are also proved in this article.
文摘Let A, B be two unital C^*-algebras. By using fixed pint methods, we prove that every almost unital almost linear mapping h : A →B which satisfies h(2^nuy) = h(2^nu)h(y) for all u ∈ U(A), all y ∈ A, and all n = 0,1,2,..., is a homomorphism. Also, we establish the generalized Hyers-Ulam-Rassias stability of ,-homomorphisms on unital C^*-algebras.
文摘In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.