Let Tn be the algebra of all n × n complex upper triangular matrices. We give the concrete forms of linear injective maps on Tn which preserve the nonzero idempotency of either products of two matrices or triple ...Let Tn be the algebra of all n × n complex upper triangular matrices. We give the concrete forms of linear injective maps on Tn which preserve the nonzero idempotency of either products of two matrices or triple Jordan products of two matrices.展开更多
Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the...Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the SOCLCP is feasible and solvable for any element q?H. The solution set of a monotone SOCLCP is also characterized. It is shown that the second-order cone and Jordan product are interconnected.展开更多
基金The NSF (10571114) of Chinathe Natural Science Basic Research Plan (2005A1) of Shaanxi Province of China
文摘Let Tn be the algebra of all n × n complex upper triangular matrices. We give the concrete forms of linear injective maps on Tn which preserve the nonzero idempotency of either products of two matrices or triple Jordan products of two matrices.
基金Supported by the National Natural Science Foundation of China(No.11101302 and No.11471241)
文摘Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the SOCLCP is feasible and solvable for any element q?H. The solution set of a monotone SOCLCP is also characterized. It is shown that the second-order cone and Jordan product are interconnected.