In this paper, we introduce an additive functional inequality and a quadratic functional inequality in normed spaces, and prove the Hyers-Ulam stability of the functional inequalities in Banach spaces. Furthermore, we...In this paper, we introduce an additive functional inequality and a quadratic functional inequality in normed spaces, and prove the Hyers-Ulam stability of the functional inequalities in Banach spaces. Furthermore, we introduce an additive functional inequality and a quadratic functional inequality in non-Archimedean normed spaces, and prove the Hyers-Ulam stability of the functional inequalities in non-Archimedean Banach spaces.展开更多
基金Supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(Grant No.NRF-2012R1A1A2004299)
文摘In this paper, we introduce an additive functional inequality and a quadratic functional inequality in normed spaces, and prove the Hyers-Ulam stability of the functional inequalities in Banach spaces. Furthermore, we introduce an additive functional inequality and a quadratic functional inequality in non-Archimedean normed spaces, and prove the Hyers-Ulam stability of the functional inequalities in non-Archimedean Banach spaces.