In this paper, we propose a new method to realize drive-response system synchronization control and parameter identification for a class of generalized Julia sets. By means of this method, the zero asymptotic sliding ...In this paper, we propose a new method to realize drive-response system synchronization control and parameter identification for a class of generalized Julia sets. By means of this method, the zero asymptotic sliding variables are applied to control the fractal identification. Furthermore, the problems of synchronization control are solved in the case of a drive system with unknown parameters, and the unknown parameters of the drive system can be identified in the asymptotic synchronization process. The results of simulation examples demonstrate the effectiveness of this new method. Particularly, the basic Julia set is also discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61273088 and 11271194)the National Excellent Doctoral Dissertation of China (Grant No. 200444)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2010FM010 and ZR2011FQ035)
文摘In this paper, we propose a new method to realize drive-response system synchronization control and parameter identification for a class of generalized Julia sets. By means of this method, the zero asymptotic sliding variables are applied to control the fractal identification. Furthermore, the problems of synchronization control are solved in the case of a drive system with unknown parameters, and the unknown parameters of the drive system can be identified in the asymptotic synchronization process. The results of simulation examples demonstrate the effectiveness of this new method. Particularly, the basic Julia set is also discussed.