This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail...This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.展开更多
文摘This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.
基金Supported by National Natural Science Foundation of China(11171260)Science and Technology Foundation of Education Department of Fujian Province,China(JA11341)