To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root u...To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.展开更多
Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been...Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.展开更多
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys...This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.展开更多
In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asym...In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered,with the bottom of the flume transversely inclined at an angle of m=0.296 and vertical lateral sides.The corresponding inflow Froude number is allowed to range in the interval(1.40<F1<6.11).The properties of this jump are compared to those of hydraulic jumps in channels with other types of cross-sections.A relationship for calculating hydraulic jump efficiency is proposed for the considered flume.For F1>5,the hydraulic jump is found to be more effective than that occurring in triangular and symmetric trapezoidal channels.Also,when■mes>8 and■>5,the hydraulic jump in the asymmetrical trapezoidal channel downstream of a parallelogram sluice gate is completely formed as opposed to the situation where a triangular sluice is considered.展开更多
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n...In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.展开更多
In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
The Celebrated Jumping Frog of Calaveras County is a novel first published in 1865.It tells us a story taking place in the ancient mining camp of Angel's.By using analysis,the implication hidden behind the novel i...The Celebrated Jumping Frog of Calaveras County is a novel first published in 1865.It tells us a story taking place in the ancient mining camp of Angel's.By using analysis,the implication hidden behind the novel is explored here.That is,the abnormal social phenomena exist in the reality,the intrigue among people to gain profits and also the immoral measures people took for panning gold at the Gold Rush Era.展开更多
This paper presents a mechanical model of jumping robot based on the biological mechanism analysis of frog. By biological observation and kinematic analysis the frog jump is divided into take-offphase, aerial phase an...This paper presents a mechanical model of jumping robot based on the biological mechanism analysis of frog. By biological observation and kinematic analysis the frog jump is divided into take-offphase, aerial phase and landing phase. We find the similar trajectories of hindlimb joints during jump, the important effect of foot during take-off and the role of forelimb in supporting the body. Based on the observation, the frog jump is simplified and a mechanical model is put forward. The robot leg is represented by a 4-bar spring/linkage mechanism model, which has three Degrees of Freedom (DOF) at hip joint and one DOF (passive) at tarsometatarsal joint on the foot. The shoulder and elbow joints each has one DOF for the balancing function of arm. The ground reaction force of the model is analyzed and compared with that of frog during take-off. The results show that the model has the same advantages of low likelihood of premature lift-off and high efficiency as the frog. Analysis results and the model can be employed to develop and control a robot capable of mimicking the jumping behavior of frog.展开更多
This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subj...This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures.展开更多
This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of mode...This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.展开更多
Understanding the mechanism of coalescence-induced self-propelled jumping behavior provides distinct insights in designing and optimizing functional coatings with self-cleaning and anti-icing properties.However,to dat...Understanding the mechanism of coalescence-induced self-propelled jumping behavior provides distinct insights in designing and optimizing functional coatings with self-cleaning and anti-icing properties.However,to date self-propelled jumping phenomenon has only been observed and studied on superhydrophobic surfaces,other than those hydrophobic surfaces with weaker but fairish water-repellency,for instance,vulcanized silicon rubber(RTV) coatings.In this work,from the perspective of thermodynamic-based energy balance aspect,the reason that self-propelled jumping phenomenon does not happen on RTV coatings is studied.The apparent contact angles of droplets on RTV coatings can be less than the theoretical critical values therefore cannot promise energy surplus for the coalesced droplets onside.Besides,on RTV and superhydrophobic surfaces,the droplet-size dependent variation characteristics of the energy leftover from the coalescence process are opposite.For the droplets coalescing on RTV coatings,the magnitudes of energy dissipations are more sensitive to the increase in droplet size,compared to that of released surface energy.While for superhydrophobic coatings,the energy generated during the coalescence process can be more sensitive than the dissipations to the change in droplet size.展开更多
This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Mar...This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.展开更多
This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By ...This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.展开更多
In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained...In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained to guarantee the asymptotic stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters. The results are derived by using the Lyapunov functional technique, Lipchitz condition and S-procuture. Finally, numerical examples are given to demonstrate the correctness of the theoretical results. Our results are also compared with results discussed in [31] and [34] to show the effectiveness and conservativeness.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d...The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.展开更多
This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off...This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.展开更多
To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents,in this article,three kinds of elastic cushion materials,Portuguese cork board,...To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents,in this article,three kinds of elastic cushion materials,Portuguese cork board,BGL insulation sound insulation foam board,and EPP polypropylene plastic foam board,are applied to the sound insulation of a light frame wood floor structure of the same bedroom and compared to the ordinary floor.This study uses the transfer function method and transient excitation method to measure the sound insulation,damping ratio,and elastic modulus of materials,as well as the sound insulation of the floor under the jumping excitation method of daily behavior.Through comparative analysis,the results and factors of improving the sound insulation performance of the floor are obtained,according to which three types of elastic cushion materials and the floor covering composed of them have higher vibration and noise reduction performance.Among them,the overall sound insulation performance of BGL board floor is the highest,followed by EPP board and cork board floor,and ordinary OSB floor is the lowest.Under the jumping excitation method,three floating floors can improve the impact sound insulation performance of the middle and low-frequency bands.展开更多
基金This work was supported by National Natural Science Foundation of China(12372045)Shanghai Aerospace Science and Technology Program(SAST2021-030).
文摘To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.
基金supported in part by the National Science Fund for Excellent Young Scholars of China(62222317)the National Science Foundation of China(62303492)+3 种基金the Major Science and Technology Projects in Hunan Province(2021GK1030)the Science and Technology Innovation Program of Hunan Province(2022WZ1001)the Key Research and Development Program of Hunan Province(2023GK2023)the Fundamental Research Funds for the Central Universities of Central South University(2024ZZTS0116)。
文摘This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.
文摘In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered,with the bottom of the flume transversely inclined at an angle of m=0.296 and vertical lateral sides.The corresponding inflow Froude number is allowed to range in the interval(1.40<F1<6.11).The properties of this jump are compared to those of hydraulic jumps in channels with other types of cross-sections.A relationship for calculating hydraulic jump efficiency is proposed for the considered flume.For F1>5,the hydraulic jump is found to be more effective than that occurring in triangular and symmetric trapezoidal channels.Also,when■mes>8 and■>5,the hydraulic jump in the asymmetrical trapezoidal channel downstream of a parallelogram sluice gate is completely formed as opposed to the situation where a triangular sluice is considered.
基金supported in part by the National Natural Science Foundation of China (62222310, U1813201, 61973131, 62033008)the Research Fund for the Taishan Scholar Project of Shandong Province of China+2 种基金the NSFSD(ZR2022ZD34)Japan Society for the Promotion of Science (21K04129)Fujian Outstanding Youth Science Fund (2020J06022)。
文摘In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
文摘The Celebrated Jumping Frog of Calaveras County is a novel first published in 1865.It tells us a story taking place in the ancient mining camp of Angel's.By using analysis,the implication hidden behind the novel is explored here.That is,the abnormal social phenomena exist in the reality,the intrigue among people to gain profits and also the immoral measures people took for panning gold at the Gold Rush Era.
基金the National High Technology Research and Development Program of China (No.2006AA04Z245)Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (IRT0423)
文摘This paper presents a mechanical model of jumping robot based on the biological mechanism analysis of frog. By biological observation and kinematic analysis the frog jump is divided into take-offphase, aerial phase and landing phase. We find the similar trajectories of hindlimb joints during jump, the important effect of foot during take-off and the role of forelimb in supporting the body. Based on the observation, the frog jump is simplified and a mechanical model is put forward. The robot leg is represented by a 4-bar spring/linkage mechanism model, which has three Degrees of Freedom (DOF) at hip joint and one DOF (passive) at tarsometatarsal joint on the foot. The shoulder and elbow joints each has one DOF for the balancing function of arm. The ground reaction force of the model is analyzed and compared with that of frog during take-off. The results show that the model has the same advantages of low likelihood of premature lift-off and high efficiency as the frog. Analysis results and the model can be employed to develop and control a robot capable of mimicking the jumping behavior of frog.
基金the National Natural Science Foundation of China under Grant Nos.51178338 and 51478346State Key Laboratory of Disaster Reduction in Civil Engineering under Grant No.SLDRCE14-B-16
文摘This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures.
基金Project supported by the 2010 Yeungnam University Research Grant
文摘This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.
文摘Understanding the mechanism of coalescence-induced self-propelled jumping behavior provides distinct insights in designing and optimizing functional coatings with self-cleaning and anti-icing properties.However,to date self-propelled jumping phenomenon has only been observed and studied on superhydrophobic surfaces,other than those hydrophobic surfaces with weaker but fairish water-repellency,for instance,vulcanized silicon rubber(RTV) coatings.In this work,from the perspective of thermodynamic-based energy balance aspect,the reason that self-propelled jumping phenomenon does not happen on RTV coatings is studied.The apparent contact angles of droplets on RTV coatings can be less than the theoretical critical values therefore cannot promise energy surplus for the coalesced droplets onside.Besides,on RTV and superhydrophobic surfaces,the droplet-size dependent variation characteristics of the energy leftover from the coalescence process are opposite.For the droplets coalescing on RTV coatings,the magnitudes of energy dissipations are more sensitive to the increase in droplet size,compared to that of released surface energy.While for superhydrophobic coatings,the energy generated during the coalescence process can be more sensitive than the dissipations to the change in droplet size.
基金the National Natural Science Foundation of China (No.60074007).
文摘This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.11202084)
文摘This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.
基金supported by NBHM project grant No.2/48(10)/2011-RD-II/865
文摘In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained to guarantee the asymptotic stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters. The results are derived by using the Lyapunov functional technique, Lipchitz condition and S-procuture. Finally, numerical examples are given to demonstrate the correctness of the theoretical results. Our results are also compared with results discussed in [31] and [34] to show the effectiveness and conservativeness.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金supported by the National Natural Science Foundation of China(60874114).
文摘The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.
基金Project supported by the National Natutal Science Foundation of China
文摘This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.
基金This study was funded by Co-Innovation Center of Efficient Processing and Utilization of Forest Resources(Nanjing Forestry University,Nanjing,210037,China).
文摘To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents,in this article,three kinds of elastic cushion materials,Portuguese cork board,BGL insulation sound insulation foam board,and EPP polypropylene plastic foam board,are applied to the sound insulation of a light frame wood floor structure of the same bedroom and compared to the ordinary floor.This study uses the transfer function method and transient excitation method to measure the sound insulation,damping ratio,and elastic modulus of materials,as well as the sound insulation of the floor under the jumping excitation method of daily behavior.Through comparative analysis,the results and factors of improving the sound insulation performance of the floor are obtained,according to which three types of elastic cushion materials and the floor covering composed of them have higher vibration and noise reduction performance.Among them,the overall sound insulation performance of BGL board floor is the highest,followed by EPP board and cork board floor,and ordinary OSB floor is the lowest.Under the jumping excitation method,three floating floors can improve the impact sound insulation performance of the middle and low-frequency bands.