Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found ...Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found that the highly efficient adsorption of Rh B molecules via the electrostatic attraction between Br-and cationic /N(Et)2 group played a key role for the high photocatalytic activities of BiOBr/BiVO4. This efficient adsorption promoted the N-deethylation of Rh B and thus accelerated the photocatalytic degradation of Rh B.Moreover, the metal-to-metal charge transfer(MMCT) mechanism was proposed, which revealed the concrete path paved with Bi–O–Bi chains for the carrier migration in BiOBr/BiVO4. The interaction between photoexcited Rh B* and the Bi^(3+) in BiVO4 provided the driving force for the migration of photo-generated carriers along the Bi–O–Bi chains. This work has not only demonstrated the important role of efficient adsorption in the photocatalytic degradation of organic contaminants, but also developed a facile strategy to improve the efficiency of photocatalysts.展开更多
基金supported by National Basic Research Program (973) of China (No. 2013CB933200)the National Natural Science Foundation of China (Nos. 21671197, 51472260)the Research Grant (No. 16ZR1440800) from Shanghai Science and Technology Commission
文摘Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found that the highly efficient adsorption of Rh B molecules via the electrostatic attraction between Br-and cationic /N(Et)2 group played a key role for the high photocatalytic activities of BiOBr/BiVO4. This efficient adsorption promoted the N-deethylation of Rh B and thus accelerated the photocatalytic degradation of Rh B.Moreover, the metal-to-metal charge transfer(MMCT) mechanism was proposed, which revealed the concrete path paved with Bi–O–Bi chains for the carrier migration in BiOBr/BiVO4. The interaction between photoexcited Rh B* and the Bi^(3+) in BiVO4 provided the driving force for the migration of photo-generated carriers along the Bi–O–Bi chains. This work has not only demonstrated the important role of efficient adsorption in the photocatalytic degradation of organic contaminants, but also developed a facile strategy to improve the efficiency of photocatalysts.