The late Paleozoic postcollisional granitoids, mafic-ultramafic complexes, and volcanic rocks are extensively distributed around the Junggar Basin; they are generally characterized by positive εNd(t) values, implying...The late Paleozoic postcollisional granitoids, mafic-ultramafic complexes, and volcanic rocks are extensively distributed around the Junggar Basin; they are generally characterized by positive εNd(t) values, implying that the magmas were mantle-derived and contaminated with crustal materials to some extents. The emplacement of mantle-derived magmas and their differentiates in the upper crust is the expression of deep geological processes at shallow level, while much more mantle-derived magmas were underplated in the lower crust and the region near the crust-mantle boundary, being component part of basement of the Junggar Basin. The postcollisional mafic-ultramafic complexes would not be generated by re-melting of residual oceanic crust, which was considered as the basement of the Junggar Basin, unless very high degrees of partial melting occurred. Even if old continental crust had been present before collision, it would have been strongly modified by the mantle-derived magma underplating. This interpretation is compatible with the existing geophysical data.展开更多
A comprehensive geophysical profile stretching from Qingyijing at the southern edge of the Junggar Basin to Ubara on the northern margin of the Junggar Basin was conducted in an attempt to probe the crustal structure ...A comprehensive geophysical profile stretching from Qingyijing at the southern edge of the Junggar Basin to Ubara on the northern margin of the Junggar Basin was conducted in an attempt to probe the crustal structure of the western Junggar Basin(hereafter referred to simply as ‘the Basin'), and, in particular, the structure and property of the Basin's crystalline basement. A survey using seismically converted waves was conducted along this profile to determine the characteristics of the P-and Swave velocities typical of the crust and uppermost mantle. A joint inversion of gravitation and aeromagnetic data was also performed to acquire the density and magnetization intensity values found beneath the western Basin. This research revealed that the Basin is composed of the so-called Manasi terrain in the south, and the Wulungu terrain in the north. Their boundary is located along the WNW-trending Dishuiquan-Sangequan suture, linking the NE-striking Da'erbute suture(DS) in the west, and the WNWtrending Kalameili suture(KS) in the east. In its northern part, the Wulungu-type terrain has a doublelayered basement, of which the upper layer is a folded basement of Hercynian orogenic origin, and the lower layer is a crystalline basement of Middle–Upper Proterozoic age. The southern part of the Basin, i.e., the Manasi terrain, has a single-layered crystalline basement. The folded basement here is too thin to be clearly distinguished.展开更多
基金Project supported by the National Natural Science Foundation of China (Grants Nos. 4900031 and 49272103).
文摘The late Paleozoic postcollisional granitoids, mafic-ultramafic complexes, and volcanic rocks are extensively distributed around the Junggar Basin; they are generally characterized by positive εNd(t) values, implying that the magmas were mantle-derived and contaminated with crustal materials to some extents. The emplacement of mantle-derived magmas and their differentiates in the upper crust is the expression of deep geological processes at shallow level, while much more mantle-derived magmas were underplated in the lower crust and the region near the crust-mantle boundary, being component part of basement of the Junggar Basin. The postcollisional mafic-ultramafic complexes would not be generated by re-melting of residual oceanic crust, which was considered as the basement of the Junggar Basin, unless very high degrees of partial melting occurred. Even if old continental crust had been present before collision, it would have been strongly modified by the mantle-derived magma underplating. This interpretation is compatible with the existing geophysical data.
基金supported by the Major Program of the National Natural Science Foundation of China (No. 41490611)the Joint Research Projects between the Pakistan Science Foundation and the National Natural Science Foundation of China (No. 41661144026)the Detailed Lithospheric Structure and Deep Processes of the Tibetan Main Collision Zone (No. 2016YFC0600301)
文摘A comprehensive geophysical profile stretching from Qingyijing at the southern edge of the Junggar Basin to Ubara on the northern margin of the Junggar Basin was conducted in an attempt to probe the crustal structure of the western Junggar Basin(hereafter referred to simply as ‘the Basin'), and, in particular, the structure and property of the Basin's crystalline basement. A survey using seismically converted waves was conducted along this profile to determine the characteristics of the P-and Swave velocities typical of the crust and uppermost mantle. A joint inversion of gravitation and aeromagnetic data was also performed to acquire the density and magnetization intensity values found beneath the western Basin. This research revealed that the Basin is composed of the so-called Manasi terrain in the south, and the Wulungu terrain in the north. Their boundary is located along the WNW-trending Dishuiquan-Sangequan suture, linking the NE-striking Da'erbute suture(DS) in the west, and the WNWtrending Kalameili suture(KS) in the east. In its northern part, the Wulungu-type terrain has a doublelayered basement, of which the upper layer is a folded basement of Hercynian orogenic origin, and the lower layer is a crystalline basement of Middle–Upper Proterozoic age. The southern part of the Basin, i.e., the Manasi terrain, has a single-layered crystalline basement. The folded basement here is too thin to be clearly distinguished.