本文证明了如下结论:设 p 是一个素数,有限 p′-群 G 忠实不可约地作用于初等交换 p-群 V.若 G的阶不能被4整除,则半直积群 GV 的共轭类个数一定不大于 V 的阶.或者等价地:设 G 是一个有限 p-可解群,且其p′-Hall 子群的阶不能被4整除,...本文证明了如下结论:设 p 是一个素数,有限 p′-群 G 忠实不可约地作用于初等交换 p-群 V.若 G的阶不能被4整除,则半直积群 GV 的共轭类个数一定不大于 V 的阶.或者等价地:设 G 是一个有限 p-可解群,且其p′-Hall 子群的阶不能被4整除,则 G 的每个 p-块中含不可约常指标的个数一定不大于这个块的亏群的阶.展开更多
文摘本文证明了如下结论:设 p 是一个素数,有限 p′-群 G 忠实不可约地作用于初等交换 p-群 V.若 G的阶不能被4整除,则半直积群 GV 的共轭类个数一定不大于 V 的阶.或者等价地:设 G 是一个有限 p-可解群,且其p′-Hall 子群的阶不能被4整除,则 G 的每个 p-块中含不可约常指标的个数一定不大于这个块的亏群的阶.