The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results...The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results showed that the compound Li2MoO4.6Na2MoO4 did not exist; however, it confirmed the existence of the compound Li2MoO4.3Na2MoO4 in the Li2MoO4-Na2MoO4 systen'ls. With regard to the system of Na2MoO4-K2MoO4, we could not confirm the results reported by Bukhanova who claimed that the system was eutectic type with 1:1 and 1:2 intermediate compounds, refuting the statement of Amadori who thought there was an apparent phase boundary at high temperature in α-solid solution region of the Na2MoO4-K2MoO4 binary system. The revised phase diagrams of these systems are illustrated in this article. These experimental results are in agreement with the computerized prediction using the support vector machine-atomic parameter method for the assessment of phase diagrams.展开更多
The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results...The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results showed that the compound Li2MoO4·6Na2MoO4 did not exist; however,it confirmed the existence of the compound Li2MoO4·3Na2MoO4 in the Li2MoO4-Na2MoO4 systems. With regard to the system of Na2MoO4-K2MoO4,we could not confirm the results reported by Bukhanova who claimed that the system was eutectic type with 1∶1 and 1∶2 intermediate compounds,refuting the statement of Amadori who thought there was an apparent phase boundary at high temperature in α-solid solution region of the Na2MoO4-K2MoO4 binary system. The revised phase diagrams of these systems are illustrated in this article. These experimental results are in agreement with the computerized prediction using the support vector machine-atomic parameter method for the assessment of phase diagrams.展开更多
Raman scattering measurements of K_2 Sr(MoO_4)2 were performed in the temperature range of 25–750?C. The Raman spectrum of the low-temperature phase α-K_2 Sr(MoO_4)2 that was obtained by first-principle calcula...Raman scattering measurements of K_2 Sr(MoO_4)2 were performed in the temperature range of 25–750?C. The Raman spectrum of the low-temperature phase α-K_2 Sr(MoO_4)2 that was obtained by first-principle calculations indicated that the Raman bands in the wavenumber region of 250–500 cm-1 are related to Mo–O bending vibrations in MoO4 tetrahedra,while the Raman bands in the wavenumber region of 650–950 cm-1 are attributed to stretching vibrations of Mo–O bonds.The temperature-dependent Raman spectra reveal that K_2 Sr(MoO_4)2 exhibits two sets of modifications in the Raman spectra at ~ 150?C and ~ 475?C, attributed to structural phase transitions. The large change of the Raman spectra in the temperature range of 150?C to 475?C suggests structural instability of the medium-temperature phase β-K_2 Sr(MoO_4)2.展开更多
K2Ba(MoO4)2:Eu3+ phosphors were synthesized by solid-state reaction. The emission and excitation spectra of K2 Ba(MoO4)2:Eu3+ phosphors exhibited that the phosphors could be effectively excited by near ultravi...K2Ba(MoO4)2:Eu3+ phosphors were synthesized by solid-state reaction. The emission and excitation spectra of K2 Ba(MoO4)2:Eu3+ phosphors exhibited that the phosphors could be effectively excited by near ultraviolet (394 nm) and blue (465 nm) light, and emitted red light at 616 nm. The influence of Eu3+concentration, sintering temperature and charge compensators (K+, Na+ or Li+ ) on the emission intensity were investigated. The results indicated that concentration quenching of Eu3+ was not observed within 30mol.% Eu 3+, 600 oC was a suitable sintering temperature for preparation of K2 Ba(MoO4)2:Eu3+phosphors, and K+ ions gave the best improvement to enhance the emission intensity. The CIE chromaticity coordinates of K2 Ba(MoO4)2:0.05Eu3+phosphor were calculated to be (0.68, 0.32), and color purity was 97.4%.展开更多
Herein, we report the effects of doped K and Al on the carbon dioxide (CO2) adsorption performance of the Li4SiO4-based adsorbents. The CO2 adsorption capacity of 0.8 wt% K and 1.5 wt% AI doped Li4SiO4 is ~2.2 time...Herein, we report the effects of doped K and Al on the carbon dioxide (CO2) adsorption performance of the Li4SiO4-based adsorbents. The CO2 adsorption capacity of 0.8 wt% K and 1.5 wt% AI doped Li4SiO4 is ~2.2 times and ~1.3 times higher than that of the pristine Li4SiO4 at 500 and 600℃, respectively. The kinetic study further indicated that the reaction rates of the lithium diffusion process is greatly improved by K and AI doping, and the lithium diffusion rate of 0.8 wt% K and 1.5 wt% AI doped Li4SiO4 is ~2 times higher than that of the pristine Li4SiO4 at 575-650 ℃. K and AI doping increases the adsorption capacity of Li4SiO4-based adsorbents, and widens its effective adsorption temperature range展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.20373040).
文摘The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results showed that the compound Li2MoO4.6Na2MoO4 did not exist; however, it confirmed the existence of the compound Li2MoO4.3Na2MoO4 in the Li2MoO4-Na2MoO4 systen'ls. With regard to the system of Na2MoO4-K2MoO4, we could not confirm the results reported by Bukhanova who claimed that the system was eutectic type with 1:1 and 1:2 intermediate compounds, refuting the statement of Amadori who thought there was an apparent phase boundary at high temperature in α-solid solution region of the Na2MoO4-K2MoO4 binary system. The revised phase diagrams of these systems are illustrated in this article. These experimental results are in agreement with the computerized prediction using the support vector machine-atomic parameter method for the assessment of phase diagrams.
文摘The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results showed that the compound Li2MoO4·6Na2MoO4 did not exist; however,it confirmed the existence of the compound Li2MoO4·3Na2MoO4 in the Li2MoO4-Na2MoO4 systems. With regard to the system of Na2MoO4-K2MoO4,we could not confirm the results reported by Bukhanova who claimed that the system was eutectic type with 1∶1 and 1∶2 intermediate compounds,refuting the statement of Amadori who thought there was an apparent phase boundary at high temperature in α-solid solution region of the Na2MoO4-K2MoO4 binary system. The revised phase diagrams of these systems are illustrated in this article. These experimental results are in agreement with the computerized prediction using the support vector machine-atomic parameter method for the assessment of phase diagrams.
基金Project supported by the Natural Science Foundation of Anhui Province,China(Grant Nos.KJ2018A0588 and KJ2017A625)
文摘Raman scattering measurements of K_2 Sr(MoO_4)2 were performed in the temperature range of 25–750?C. The Raman spectrum of the low-temperature phase α-K_2 Sr(MoO_4)2 that was obtained by first-principle calculations indicated that the Raman bands in the wavenumber region of 250–500 cm-1 are related to Mo–O bending vibrations in MoO4 tetrahedra,while the Raman bands in the wavenumber region of 650–950 cm-1 are attributed to stretching vibrations of Mo–O bonds.The temperature-dependent Raman spectra reveal that K_2 Sr(MoO_4)2 exhibits two sets of modifications in the Raman spectra at ~ 150?C and ~ 475?C, attributed to structural phase transitions. The large change of the Raman spectra in the temperature range of 150?C to 475?C suggests structural instability of the medium-temperature phase β-K_2 Sr(MoO_4)2.
基金Project supported by Natural Science Foundation of Fujian Province (2011J033)
文摘K2Ba(MoO4)2:Eu3+ phosphors were synthesized by solid-state reaction. The emission and excitation spectra of K2 Ba(MoO4)2:Eu3+ phosphors exhibited that the phosphors could be effectively excited by near ultraviolet (394 nm) and blue (465 nm) light, and emitted red light at 616 nm. The influence of Eu3+concentration, sintering temperature and charge compensators (K+, Na+ or Li+ ) on the emission intensity were investigated. The results indicated that concentration quenching of Eu3+ was not observed within 30mol.% Eu 3+, 600 oC was a suitable sintering temperature for preparation of K2 Ba(MoO4)2:Eu3+phosphors, and K+ ions gave the best improvement to enhance the emission intensity. The CIE chromaticity coordinates of K2 Ba(MoO4)2:0.05Eu3+phosphor were calculated to be (0.68, 0.32), and color purity was 97.4%.
基金supported by the National Natural Science Foundation of China(Nos. 21476160, 21476159]the Natural Science Foundation of Tianjin(Nos.15JCYBJC23000,15JCZDJC37400)
文摘Herein, we report the effects of doped K and Al on the carbon dioxide (CO2) adsorption performance of the Li4SiO4-based adsorbents. The CO2 adsorption capacity of 0.8 wt% K and 1.5 wt% AI doped Li4SiO4 is ~2.2 times and ~1.3 times higher than that of the pristine Li4SiO4 at 500 and 600℃, respectively. The kinetic study further indicated that the reaction rates of the lithium diffusion process is greatly improved by K and AI doping, and the lithium diffusion rate of 0.8 wt% K and 1.5 wt% AI doped Li4SiO4 is ~2 times higher than that of the pristine Li4SiO4 at 575-650 ℃. K and AI doping increases the adsorption capacity of Li4SiO4-based adsorbents, and widens its effective adsorption temperature range