The TPR experiments and DTA TG results showed that catalyst Pt Sn K/Al 2O 3 had a better selectivity(94 60%) and yield(48 71%) for isobutane dehydrogenation than Pt Sn/Al 2O 3.
The carbonation characteristics of K2CO3/Al2O3 supported sorbent for CO2 capture was investigated with thermogravimetric apparatus(TGA),X-ray diffraction(XRD),scanning electron microscopy analysis(SEM)and N2 adsorptio...The carbonation characteristics of K2CO3/Al2O3 supported sorbent for CO2 capture was investigated with thermogravimetric apparatus(TGA),X-ray diffraction(XRD),scanning electron microscopy analysis(SEM)and N2 adsorption.The results showed that the carbonation rate of K2CO3 before being loaded on Al2O3 was slow.However,the K2CO3/Al2O3supported sorbent showed excellent carbonation performance.The difference in carbonation behavior between K2CO3and K2CO3/Al2O3supported sorbent was analyzed from the microscopic view.The analytical reagent K2CO3 sample was of monoclinic crystal structure and could react quickly with H2O in the experimental carbonation environment to produce K2CO3·1.5H2O,which was unfavorable to carbonation reaction.When K2CO3was loaded on Al2O3,the surface area and porosity of the sorbent was improved greatly.So the carbonation properties of the K2CO3/Al2O3 supported sorbent was also improved.展开更多
The dispersion of K\-2CO\-3 on \%γ\%\|Al\-2O\-3 and the adsorption performance of K\-2CO\-3/\%γ\%\|Al\-2O\-3 to SO\-2 are investigated.The results show that K\-2CO\-3 can disperse onto the surface of \%γ\%\|Al\-2O\...The dispersion of K\-2CO\-3 on \%γ\%\|Al\-2O\-3 and the adsorption performance of K\-2CO\-3/\%γ\%\|Al\-2O\-3 to SO\-2 are investigated.The results show that K\-2CO\-3 can disperse onto the surface of \%γ\%\|Al\-2O\-3 as a monolayer and the dispersion threshold is 0.31\[\%m\%(K\-2CO\-3)/\%m\%(\%γ\%\|Al\-2O\-3), \%m\%/g\], which is close to the theoretical value calculated by assuming a bidentate vertical dispersion model of CO\-2 on the \%γ\%\|Al\-2O\-3 surface . The SO\-2 adsorption\|capacity on K\-2CO\-3/\%γ\%\|Al\-2O\-3 sample increases with the K\-2CO\-3 loading and reaches an extremum at its threshold. The adsorbent conversion of K\-2CO\-3/\%γ\%\|Al\-2O\-3 at the threshold is up to 72%. When the loading is higher than the threshold, the SO\-2 adsorption capacity decreases at first, then increases again. This phenomenon is caused by the reaction between SO\-2 and the bulk phase of K\-2CO\-3 crystallites. The sample decreases with the loading, and the sample with \{0.10\}\[\%m\%(K\-2CO\-3)/\%m(γ\%\|Al\-2O\-3), \%m\%/g\] loading shows the highest regeneration percentage of 63%. Compared with Na\-2CO\-3/\%γ\%\|Al\-2O\-3, K\-2CO\-3/\%γ\%\|Al\-2O\-3 might have some advantages.展开更多
文摘The TPR experiments and DTA TG results showed that catalyst Pt Sn K/Al 2O 3 had a better selectivity(94 60%) and yield(48 71%) for isobutane dehydrogenation than Pt Sn/Al 2O 3.
文摘采用真空浸渍法制备炭基固体碱催化剂K2O/C,并在超声波辅助条件下,利用制备的K2O/C催化纤维低聚糖与油酸甲酯制备纤维低聚糖脂肪酸酯表面活性剂。选取L9(34)正交试验确定制备K2O/C催化剂的最佳条件为:炭基载体平均孔径为2.87 nm,K2CO3与炭基载体的质量比值为0.5,真空浸渍后,450℃下煅烧2 h。考察了超声波辅助下超声波时间、超声波频率、反应温度、反应时间和催化剂用量对产品得率的影响。研究发现:在20 k Hz,150 W超声功率下,将物质的量之比为2∶1的油酸甲酯和纤维低聚糖(水溶液)超声波作用15 min,形成均一稳定的乳化体系,真空条件下,移除体系中的水分后,加入占总物料量5%的K2O/C催化剂,125℃下反应2 h,纤维低聚糖脂肪酸酯的最高得率为85.6%,其酯化度为18.8%,亲水亲油平衡值(HLB)为9.89,表面张力为32.1 m N/m,乳化力为28.1%,硬水稳定性4级。
文摘The carbonation characteristics of K2CO3/Al2O3 supported sorbent for CO2 capture was investigated with thermogravimetric apparatus(TGA),X-ray diffraction(XRD),scanning electron microscopy analysis(SEM)and N2 adsorption.The results showed that the carbonation rate of K2CO3 before being loaded on Al2O3 was slow.However,the K2CO3/Al2O3supported sorbent showed excellent carbonation performance.The difference in carbonation behavior between K2CO3and K2CO3/Al2O3supported sorbent was analyzed from the microscopic view.The analytical reagent K2CO3 sample was of monoclinic crystal structure and could react quickly with H2O in the experimental carbonation environment to produce K2CO3·1.5H2O,which was unfavorable to carbonation reaction.When K2CO3was loaded on Al2O3,the surface area and porosity of the sorbent was improved greatly.So the carbonation properties of the K2CO3/Al2O3 supported sorbent was also improved.
文摘The dispersion of K\-2CO\-3 on \%γ\%\|Al\-2O\-3 and the adsorption performance of K\-2CO\-3/\%γ\%\|Al\-2O\-3 to SO\-2 are investigated.The results show that K\-2CO\-3 can disperse onto the surface of \%γ\%\|Al\-2O\-3 as a monolayer and the dispersion threshold is 0.31\[\%m\%(K\-2CO\-3)/\%m\%(\%γ\%\|Al\-2O\-3), \%m\%/g\], which is close to the theoretical value calculated by assuming a bidentate vertical dispersion model of CO\-2 on the \%γ\%\|Al\-2O\-3 surface . The SO\-2 adsorption\|capacity on K\-2CO\-3/\%γ\%\|Al\-2O\-3 sample increases with the K\-2CO\-3 loading and reaches an extremum at its threshold. The adsorbent conversion of K\-2CO\-3/\%γ\%\|Al\-2O\-3 at the threshold is up to 72%. When the loading is higher than the threshold, the SO\-2 adsorption capacity decreases at first, then increases again. This phenomenon is caused by the reaction between SO\-2 and the bulk phase of K\-2CO\-3 crystallites. The sample decreases with the loading, and the sample with \{0.10\}\[\%m\%(K\-2CO\-3)/\%m(γ\%\|Al\-2O\-3), \%m\%/g\] loading shows the highest regeneration percentage of 63%. Compared with Na\-2CO\-3/\%γ\%\|Al\-2O\-3, K\-2CO\-3/\%γ\%\|Al\-2O\-3 might have some advantages.