针对复杂工业过程数据的动态性、非线性和多阶段性等特征,提出基于时空近邻标准化和KNN规则(Time-Space Nearest Neighborhood Standardization and K Nearest Neighbor Rule,TSNS-KNN)的复杂多阶段过程故障检测方法。首先使用训练样本...针对复杂工业过程数据的动态性、非线性和多阶段性等特征,提出基于时空近邻标准化和KNN规则(Time-Space Nearest Neighborhood Standardization and K Nearest Neighbor Rule,TSNS-KNN)的复杂多阶段过程故障检测方法。首先使用训练样本在时间和空间域上的两层嵌套近邻集的统计信息对样本预处理,然后将标准样本的累积近邻距离作为检测统计量进行故障检测。TSNS-KNN在排除非线性干扰的同时,消除了前后时刻样本间的动态相关性,将多阶段数据转换为单阶段数据,从而实现对复杂多阶段过程的检测。将该方法运用于数值实验和青霉素发酵过程,并与其他方法进行比较,对比结果进一步验证了TSNS-KNN方法的优越性。展开更多
针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指...针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。展开更多
文摘针对复杂工业过程数据的动态性、非线性和多阶段性等特征,提出基于时空近邻标准化和KNN规则(Time-Space Nearest Neighborhood Standardization and K Nearest Neighbor Rule,TSNS-KNN)的复杂多阶段过程故障检测方法。首先使用训练样本在时间和空间域上的两层嵌套近邻集的统计信息对样本预处理,然后将标准样本的累积近邻距离作为检测统计量进行故障检测。TSNS-KNN在排除非线性干扰的同时,消除了前后时刻样本间的动态相关性,将多阶段数据转换为单阶段数据,从而实现对复杂多阶段过程的检测。将该方法运用于数值实验和青霉素发酵过程,并与其他方法进行比较,对比结果进一步验证了TSNS-KNN方法的优越性。
文摘针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。