期刊文献+
共找到3,985篇文章
< 1 2 200 >
每页显示 20 50 100
Biomimetic 3D printing of composite structures with decreased cracking
1
作者 Fan Du Kai Li +7 位作者 Mingzhen Li Junyang Fang Long Sun Chao Wang Yexin Wang Maiqi Liu Jinbang Li Xiaoying Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期24-34,共11页
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepar... The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators. 展开更多
关键词 3d printing Electrohydrodynamic jet BIOMIMETIC structural integrity Composite scaffold
下载PDF
Interpenetrated Structures for Enhancing Ion Diffusion Kinetics in Electrochemical Energy Storage Devices
2
作者 Xinzhe Xue Longsheng Feng +9 位作者 Qiu Ren Cassidy Tran Samuel Eisenberg Anica Pinongcos Logan Valdovinos Cathleen Hsieh Tae Wook Heo Marcus A.Worsley Cheng Zhu Yat Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期718-728,共11页
The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices(EESDs)by increasing surface area,thickness,and active materials mass loading while maintaining... The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices(EESDs)by increasing surface area,thickness,and active materials mass loading while maintaining good ion diffusion through optimized electrode tortuosity.However,conventional thick electrodes increase ion diffusion length and cause larger ion concentration gradients,limiting reaction kinetics.We demonstrate a strategy for building interpenetrated structures that shortens ion diffusion length and reduces ion concentration inhomogeneity.This free-standing device structure also avoids short-circuiting without needing a separator.The feature size and number of interpenetrated units can be adjusted during printing to balance surface area and ion diffusion.Starting with a 3D-printed interpenetrated polymer substrate,we metallize it to make it conductive.This substrate has two individually addressable electrodes,allowing selective electrodeposition of energy storage materials.Using a Zn//MnO_(2) battery as a model system,the interpenetrated device outperforms conventional separate electrode configurations,improving volumetric energy density by 221%and exhibiting a higher capacity retention rate of 49%compared to 35%at temperatures from 20 to 0℃.Our study introduces a new EESD architecture applicable to Li-ion,Na-ion batteries,supercapacitors,etc. 展开更多
关键词 Interpenetrated structure 3d printing Electrochemical energy storage Ion diffusion length Inter-electrode distance
下载PDF
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
3
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 Internet of vehicles road networks 3d road model structure recognition GIS
下载PDF
A three-dimensional co-continuous network structure polymer electrolyte with efficient ion transport channels enabling ultralong-life all solid-state lithium metal batteries
4
作者 Meng Wang Hu Zhang +2 位作者 Yewen Li Ruiping Liu Huai Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期635-645,共11页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility wit... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries. 展开更多
关键词 Solid-state electrolyte Lithium-metal batteries Liquid crystalline polymer COPOLYMER 3d co-continuous structure Long cycle stability
下载PDF
Elimination of cracks in stainless steel casings via 3D printed sand molds with an internal topology structure
5
作者 Jun-hang Xu Bao-zhi Li +6 位作者 Zhao-wei Song Yun-bao Gao Jing-ming Li Yu Wang Qiu-lin Wen Heng Cao Zeng-rui Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第4期319-326,共8页
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects... The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs. 展开更多
关键词 gas turbine casing crack defects 3d printed sand mold topological structure high-temperature concession
下载PDF
Geophysical Significance of the Senegalo-Mali Discontinuity: Evidence from Secondary Structures, Kédougou-Kéniéba Inlier, Western Mali
6
作者 Mamadou Yossi Mahamadou Diallo +2 位作者 Mamoutou Ouattara Amadou Berthé Saidou Ly 《Open Journal of Geology》 CAS 2024年第10期943-962,共20页
The present study focuses on the analysis and description of lineaments interpreted as secondary structures to describe the nature of Senegalo Malian Discontinuity. These lineaments cross-cut the large north-south ori... The present study focuses on the analysis and description of lineaments interpreted as secondary structures to describe the nature of Senegalo Malian Discontinuity. These lineaments cross-cut the large north-south oriented transcurrent lithospheric structure known as the Senegalo Malian Discontinuity (SMD). Two lineaments were selected oriented NNE (N15˚ to N25˚), one at Dialafara and one at Sadiola. Four profiles on each lineament of these 2 zones, so that there were 2 on each side of the SMD. The ground data collected were processed using proper parameter and software. Some filters were applied to enhance the signal level. These ground data were later compared to the existing airborne magnetic data for consistency and accuracy using the upward continuation filter. The results show that the quality of ground data is good. In addition, the ground magnetic data show the presence of certain local anomalies that are not visible in the regional data. The analytical signal was also used to determine domain boundaries or possible contact zones. The contact zone can be highlighted on certain profiles such as L300 and L600. The study showed that the west and east sides of the SMD are not the same. Secondary structures become wide when approaching the SMD on both sides. They are also duplicated to the east of the SMD when we move progressively away. In the Dialafara area, the ground magnetic data intersect an interpreted fold. The results of this work confirm the presence of the secondary structures and their evolution in relation to the SMD. The relationships between the secondary structures in the Dailafara and Sadiola zones and their relations with the SMD are highlighted. The technique used in this study, is an important approach to better description and interpreting of regional structures using the secondary structures and proposing a structural model. 展开更多
关键词 kédougou-kéniéba Inlier Senegal Malian discontinuity Secondary structures Mapping Magnetic data
下载PDF
Polar-coordinate line-projection light-curing continuous 3D printing for tubular structures
7
作者 Huiyuan Wang Siqin Liu +12 位作者 Xincheng Yin Mingming Huang Yanzhe Fu Xun Chen Chao Wang Jingyong Sun Xin Yan Jianmin Han Jiping Yang Zhijian Wang Lizhen Wang Yubo Fan Jiebo Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期247-260,共14页
3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting... 3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more. 展开更多
关键词 3d printing polar coordinate line projection LIGHT-CURING tubular structure radially multi-material structures
下载PDF
Acoustical properties of a 3D printed honeycomb structure filled with nanofillers:Experimental analysis and optimization for emerging applications
8
作者 Jeyanthi Subramanian Vinoth kumar Selvaraj +3 位作者 Rohan Singh Ilangovan S Naresh Kakur Ruban Whenish 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期248-258,共11页
The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E ... The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E 1050-12.The Creality Ender-3,a 3D printer,was used for printing the honeycomb structures,and polylactic acid(PLA)material was employed for their construction.The organic,inorganic,and polymeric compounds within the composites were identified using fourier transformation infrared(FTIR)spectroscopy.The structure and homogeneity of the samples were examined using a field emission scanning electron microscope(FESEM).To determine the sound absorption coefficient of the 3D printed honeycomb structure,numerous samples were systematically developed using central composite design(CCD)and analysed using response surface methodology(RSM).The RSM mathematical model was established to predict the optimum values of each factor and noise reduction coefficient(NRC).The optimum values for an NRC of 0.377 were found to be 1.116 wt% carbon black,1.025 wt% aluminium powder,and 3.151 mm distance between parallel edges.Overall,the results demonstrate that a 3Dprinted honeycomb structure filled with nanofillers is an excellent material that can be utilized in various fields,including defence and aviation,where lightweight and acoustic properties are of great importance. 展开更多
关键词 3d printing Honeycomb structure ACOUSTICS Field emission scanning electron microscope Response surface methodology
下载PDF
Petrology and Structural Characterization of Post-Neoproterozoic Dolerites from the Kimberlite Fields in the Kéniéba Region (Western Mali)
9
作者 Gbele Ouattara Baco Traore +3 位作者 Ziandjêdé Hervé Siagné Aboubacar Denon Souleymane Sangare Marc Ephrem Allialy 《Open Journal of Geology》 CAS 2024年第6期655-670,共16页
Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with th... Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with them. The petrographic and lithogeochemical study showed that the dolerites of the Kéniéba kimberlitic fields are of tholeiitic nature and of the E-MORB (Enriched-Mid Ocean Ridge Basalt) type. This reflects an enrichment over time, compared to the Birimian dolerites of the volcano-sedimentary greenstone belt of Toumodi, in central C?te d’Ivoire. Furthermore, these dolerites are enriched in SiO2, TiO2, Zr and poor in Fe2O3, MgO. These dolerites would have formed in a late to post-orogenic intracontinental context during the breakup of Gondwana. Structurally, Kéniéba dolerites are often associated with kimberlite pipes, fractures and large deep structures identified using aeromagnetic images. Taking into account the fact that kimberlites do not outcrop in the Kéniéba region, the geochemical study coupled with the interpretation of aeromagnetic data proved to be very useful for the search for pipes. 展开更多
关键词 dOLERITES kimberlitic Fields PETROLOGY structures kéniéba MALI
下载PDF
3D characterization and analysis of pore structure of packed ore particle beds based on computed tomography images 被引量:12
10
作者 杨保华 吴爱祥 +1 位作者 缪秀秀 刘金枝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期833-838,共6页
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag... Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately. 展开更多
关键词 packed ore particle bed 3d pore structure X-ray computed tomography image analysis
下载PDF
坝肩岩体质量LDA-KNN分类模型 被引量:1
11
作者 荀鹏 李娟 +2 位作者 魏玉峰 李常虎 范文东 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期281-290,302,共11页
工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出... 工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出发,选择岩体完整性系数(K v)、结构面间距(D)、岩石质量指标(RQD)等合适的评价指标,通过引入LDA(Linear Discriminant Analysis)降维方法和K近邻分析(K-Nearest-Neighbor,KNN)相结合的多分类模型,实现了岩体的非线性分级预测。通过定性定量相结合实现了岩体多因素,多指标的综合分级,并解决了多指标判断时信息冗余,复杂程度高的问题。与其他判别方案相比较,模型得出的结果准确率高,符合工程实际,减少了人为因素的影响,体现出较强的预测判别能力。该研究为水电站大坝坝肩处的平硐岩体质量划分提出了一种可行的预测方案。 展开更多
关键词 岩体结构 岩体质量分级 线性降维 k近邻算法 分类模型
下载PDF
Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in cen-tral-western China 被引量:26
12
作者 杨智娴 于湘伟 +3 位作者 郑月军 陈运泰 倪晓晞 Winston CHAN 《地震学报》 CSCD 北大核心 2004年第1期19-29,共11页
采用中国中西部地区(2l°~36°N,98°~112°E)193个地震台在1992~1999年间记录到的9988次地震的Pg和Sg震相走时的读数资料,用Roecker的SPHYPIT90程序,反演了该地区三维地壳P波速度结构,并用SPHREL3D90程序进行... 采用中国中西部地区(2l°~36°N,98°~112°E)193个地震台在1992~1999年间记录到的9988次地震的Pg和Sg震相走时的读数资料,用Roecker的SPHYPIT90程序,反演了该地区三维地壳P波速度结构,并用SPHREL3D90程序进行了地震的重新定位.反演结果揭示了中国中西部地区地震P波速度结构明显的横向不均匀性,这些不同深度上波速的横向变化多以该地区的活动断裂为分界线.可以看出活动断裂两侧存在明显的速度反差.通过重新定位,得到了6459次地震的震源参数,这些精确定位的地震震中明显沿该区活动断裂呈现条带状分布,其范围和尺度清晰地表示了这一地区地震活动与活动断裂的紧密关系.其中,82%重新精确定位的事件的震源深度在20km以内.这一结果与笔者用双差地震定位法得到的重新定位的震源深度分布相一致. 展开更多
关键词 地震重新定位 P波速度结构 反演 双差地震定位法 地震活动 活动断裂
下载PDF
基于k-体分划的D-concurrence多体纠缠测度
13
作者 崔世杰 黄丽 +1 位作者 王银珠 马瑞芬 《太原科技大学学报》 2024年第1期109-112,共4页
对于有限维多体量子系统中的态,D-concurrence是一个重要的纠缠测度,在过去的十年中被深入探索。将D-concurrence的概念推广到k-体分划的多体量子系统,它可以度量多体量子态在k-体分划下的非经典纠缠性,并证明了纠缠测度的一些必要性质... 对于有限维多体量子系统中的态,D-concurrence是一个重要的纠缠测度,在过去的十年中被深入探索。将D-concurrence的概念推广到k-体分划的多体量子系统,它可以度量多体量子态在k-体分划下的非经典纠缠性,并证明了纠缠测度的一些必要性质,包括在k-可分态下纠缠测度为0,在局部酉操作下不变,在局部操作和经典通信(LOCC)下不增。 展开更多
关键词 d-concurrence 多体量子系统 k-体分划 量子纠缠测度
下载PDF
Isotropic sintering shrinkage of 3D glass-ceramic nanolattices:backbone preforming and mechanical enhancement
14
作者 Nianyao Chai Yunfan Yue +3 位作者 Xiangyu Chen Zhongle Zeng Sheng Li Xuewen Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期418-426,共9页
There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimen... There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials. 展开更多
关键词 3d printing isotropic shrinkage femtosecond laser two-photon polymerization structural glass-ceramics
下载PDF
Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries 被引量:4
15
作者 Sinian Yang Hongxia Du +5 位作者 Yuting Li Xiangsi Wu Bensheng Xiao Zhangxing He Qiaobao Zhang Xianwen Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1531-1552,共22页
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect... Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. 展开更多
关键词 Zinc ion battery structure design of substrate materials dendrite-free 3d Zn anode
下载PDF
Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers
16
作者 Kaili Wang Tingting Zhou +4 位作者 Zhen Cao Zhimin Yuan Hongyan He Maohong Fan Zaiyong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1336-1365,共30页
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono... The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future. 展开更多
关键词 PEMFC 3d ordered electrode structural features Preparation technology Ultralow Pt loading
下载PDF
Study on the Physical Process and Seismogenic Mechanism of the Yangbi MS 6.4 Earthquake in Dali,Yunnan Province
17
作者 DUAN Mengqiao ZHAO Cuiping ZHOU Lianqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期22-23,共2页
The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid ... The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid field investigation and earthquake relocation reveal that there was no obvious surface rupture and the earthquake did not occur on pre-existing active fault,but on a buried fault on the west side of Weixi–Qiaohou–Weishan fault zone in the eastern boundary of Baoshan sub-block.Significant foreshocks appeared three days before the earthquake.These phenomena aroused scholars'intensive attention.What the physical process and seismogenic mechanism of the Yangbi Ms 6.4 earthquake are revealed by the foreshocks and aftershocks?These scientific questions need to be solved urgently. 展开更多
关键词 The Yangbi Ms 6.4 earthquake 3d velocity structure microseismic detection B-VALUE source parameters nuleation process seismogenic mechanism
下载PDF
Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses 被引量:2
18
作者 Shota Kawabata Shi Bai +2 位作者 Kotaro Obata Godai Miyaji Koji Sugioka 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期212-220,共9页
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno... Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS. 展开更多
关键词 GHz burst laser-induced periodic surface structures(LIPSS) surface nanostructuring 2d nanostructures
下载PDF
Litho-Tectonic Architecture of the Dialafara Area, Kédougou-Kéniéba Inlier, Integration of New Field Data and Geophysics
19
作者 Mahamadou Diallo Mamadou Yossi +2 位作者 Ibrahim Méyès Coulibaly Youssouf Son Amako Dolo 《Open Journal of Geology》 CAS 2024年第3期279-297,共19页
The Dialafara area is part of the highly endowed Kédougou-Kéniéba Inlier (KKI), West-Malian gold belt, which corresponds to a Paleoproterozoic window through the West African Craton (WAC). This study pr... The Dialafara area is part of the highly endowed Kédougou-Kéniéba Inlier (KKI), West-Malian gold belt, which corresponds to a Paleoproterozoic window through the West African Craton (WAC). This study presents, first of all, an integration of geophysical data interpretation with litho-structural field reconnaissance and then proposes a new litho-structural map of the Dialafara area. The Dialafara area shows a variety of lithology characterized by volcanic and volcano-sedimentary units, metasediments and plutonic intrusion. These lithologies were affected by a complex superposition of structures of unequal importance defining three deformation phases (D<sub>D1</sub> to D<sub>D3</sub>) under ductile to brittle regimes. These features permit to portray a new litho-structural map, which shows that the Dialafara area presents a more complex lithological and structural context than the one presented in regional map of the KKI. This leads to the evidence that this area could be a potential site for exploration as it is situated between two world-class gold districts. 展开更多
关键词 kédougou-kéniéba Inlier dialafara MAPPING Aeromagnetic data structure
下载PDF
Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure 被引量:1
20
作者 李玲玲 魏勇 +4 位作者 刘春兰 任卓 周爱 刘志海 张羽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期201-208,共8页
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ... To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors. 展开更多
关键词 coaxial dual-waveguide optical fiber d structure optical fiber microsphere structure dual-channel fiber-optic surface plasmon resonance(SPR)sensor
下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部