The activities of Cu/Mn/Mg/K catalyst with different supporter have been investigated in methanol decomposition reaction as function of copper support interaction, dispersion and valency structure of copper and pore s...The activities of Cu/Mn/Mg/K catalyst with different supporter have been investigated in methanol decomposition reaction as function of copper support interaction, dispersion and valency structure of copper and pore structure of catalysts. XRD, TPR, XPS and BET methods are used to characterize the structure of catalysts and interaction between CuO/Cu and support. The results indicated that the Cu/Mn/Mg/K catalyst is much better than conventional Cu/Zn/Al catalyst in methanol decomposition, the supporters behave differently, and the catalyst supported on Al 2O 3 gives the best result.展开更多
四效催化剂的活性组分La0.8K0.2Co0.7Mn0.3O3的合成温度对柴油烟气的净化效果有较大影响,通过X射线衍射、电子扫描电镜、程序升温、比表面积检测和在线效率检测发现,750℃合成的四效催化剂净化柴油烟气的效果最好。通过K和Mn同时部分取...四效催化剂的活性组分La0.8K0.2Co0.7Mn0.3O3的合成温度对柴油烟气的净化效果有较大影响,通过X射线衍射、电子扫描电镜、程序升温、比表面积检测和在线效率检测发现,750℃合成的四效催化剂净化柴油烟气的效果最好。通过K和Mn同时部分取代La Co O3中La和Co,探讨K和Mn对钙钛矿结构和烟气净化效果的影响。比表面积检测发现,涂覆改性γ-Al2O3后,整体式催化剂比表面积增加,催化性能得到有效改善。展开更多
Comparative studies of ozonation alone, ceramic honeycomb-catalyzed and Mn-Fe-K modified ceramic honeycomb catalyzed ozonation processes have been undertaken with benzophenone as the model organic pollutant. The exper...Comparative studies of ozonation alone, ceramic honeycomb-catalyzed and Mn-Fe-K modified ceramic honeycomb catalyzed ozonation processes have been undertaken with benzophenone as the model organic pollutant. The experimental results showed that the presence of Mn-Fe-K modified ceramic honeycombs significantly increased the removal rate of benzophenone and TOC compared with that achieved by ozonation alone or ceramic honeycomb-catalyzed ozonation. The electron paramagnetic resonance (EPR) experiments verified that higher benzophenone removal rate was attribute to more hydroxyl radicals generated in the Mn-Fe-K modified ceramic honeycomb-catalyzed ozonation. Under the conditions of this experiment, the degradation rate of all the three ozonation processes are increasing with the amount of catalyst, temperature and value of pH increased in the solution. We also investigated the effects of different process of ozone addition, the optimum conditions for preparing catalyst and influence of the Mn-Fe-K modified ceramic honeycomb after multiple-repeated use.展开更多
文摘The activities of Cu/Mn/Mg/K catalyst with different supporter have been investigated in methanol decomposition reaction as function of copper support interaction, dispersion and valency structure of copper and pore structure of catalysts. XRD, TPR, XPS and BET methods are used to characterize the structure of catalysts and interaction between CuO/Cu and support. The results indicated that the Cu/Mn/Mg/K catalyst is much better than conventional Cu/Zn/Al catalyst in methanol decomposition, the supporters behave differently, and the catalyst supported on Al 2O 3 gives the best result.
文摘四效催化剂的活性组分La0.8K0.2Co0.7Mn0.3O3的合成温度对柴油烟气的净化效果有较大影响,通过X射线衍射、电子扫描电镜、程序升温、比表面积检测和在线效率检测发现,750℃合成的四效催化剂净化柴油烟气的效果最好。通过K和Mn同时部分取代La Co O3中La和Co,探讨K和Mn对钙钛矿结构和烟气净化效果的影响。比表面积检测发现,涂覆改性γ-Al2O3后,整体式催化剂比表面积增加,催化性能得到有效改善。
基金The National Natural Science Foundation of China (No. 50378028)
文摘Comparative studies of ozonation alone, ceramic honeycomb-catalyzed and Mn-Fe-K modified ceramic honeycomb catalyzed ozonation processes have been undertaken with benzophenone as the model organic pollutant. The experimental results showed that the presence of Mn-Fe-K modified ceramic honeycombs significantly increased the removal rate of benzophenone and TOC compared with that achieved by ozonation alone or ceramic honeycomb-catalyzed ozonation. The electron paramagnetic resonance (EPR) experiments verified that higher benzophenone removal rate was attribute to more hydroxyl radicals generated in the Mn-Fe-K modified ceramic honeycomb-catalyzed ozonation. Under the conditions of this experiment, the degradation rate of all the three ozonation processes are increasing with the amount of catalyst, temperature and value of pH increased in the solution. We also investigated the effects of different process of ozone addition, the optimum conditions for preparing catalyst and influence of the Mn-Fe-K modified ceramic honeycomb after multiple-repeated use.