Suaeda salsa L. seedlings grown in Hoagland nutrient solution were treated with different concentrations of NaCl combined with two levels of K + (12 μmol/L and 6 mmol/L) to study the K + nutrition effect on plant g...Suaeda salsa L. seedlings grown in Hoagland nutrient solution were treated with different concentrations of NaCl combined with two levels of K + (12 μmol/L and 6 mmol/L) to study the K + nutrition effect on plant growth and leaf tonoplast V-H +-ATPase and V-H +-PPase activity. Increase of K + supply in the culture solution markedly increased the fresh weight, dry weight and K + content of S. salsa plants. Western blot analysis showed that the leaf V-H +-ATPase of S. salsa was at least composed of A,B,C,D,E and c subunits, and their expression decreased with the increase of NaCl concentration under K + starvation (12 μmol/L K +), but increased under normal K + application (6 mmol/L K +). Leaf V-H +-PPase molecular weight was about 72.6 kD and its expression increased as NaCl concentration increased under both high or low levels of K + concentration in nutrient solution. There was a positive correlation between of V-H +-ATPase or V-H +-PPase activity and the amounts of their expression. Results in this study suggest that K + nutrition plays an important role in the salt tolerance of S. salsa, and K + is involved in the regulation of V-H +-ATPase or V-H +-PPase activity under salt stress.展开更多
Soil and tissue analyses are usually used in identifying potassium(K) deficiencies and predicting K fertilizer requirements of crops.The critical levels of both soil and fresh leaf tissue at seventh leaf stage were de...Soil and tissue analyses are usually used in identifying potassium(K) deficiencies and predicting K fertilizer requirements of crops.The critical levels of both soil and fresh leaf tissue at seventh leaf stage were developed and assessed for canola,chickpea and sunflower grown on two Saskatchewan,soils,with six rates of K fertilizer supply, in a growth chamber experiment.The available potassium in soils was determined by two methods:1)resin strip extraction, and 2) NH4OAC extraction. The potassium in fresh leaves was determined at seventh leaf stage by a simple procedure using a common garlic press and injector to extract the plant sap and testing the sap with a handheld ion selection electrode meter. The results shoWed significant relationships between the resin strip extractable K and NH4OAC extractable K, and between the plant uptake of total K and the supply of available K in the soils determined by the two methods. Good relationships were also found between the potassium in fresh leaves and the plant uptake of total K for canola, chickpea and sunflower.The resin strip extraction for K was calibrated using common NH4OAC extraction, and recommended for routine analyses because of its simplicity and sensitivity.展开更多
Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under isch...Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.展开更多
文摘Suaeda salsa L. seedlings grown in Hoagland nutrient solution were treated with different concentrations of NaCl combined with two levels of K + (12 μmol/L and 6 mmol/L) to study the K + nutrition effect on plant growth and leaf tonoplast V-H +-ATPase and V-H +-PPase activity. Increase of K + supply in the culture solution markedly increased the fresh weight, dry weight and K + content of S. salsa plants. Western blot analysis showed that the leaf V-H +-ATPase of S. salsa was at least composed of A,B,C,D,E and c subunits, and their expression decreased with the increase of NaCl concentration under K + starvation (12 μmol/L K +), but increased under normal K + application (6 mmol/L K +). Leaf V-H +-PPase molecular weight was about 72.6 kD and its expression increased as NaCl concentration increased under both high or low levels of K + concentration in nutrient solution. There was a positive correlation between of V-H +-ATPase or V-H +-PPase activity and the amounts of their expression. Results in this study suggest that K + nutrition plays an important role in the salt tolerance of S. salsa, and K + is involved in the regulation of V-H +-ATPase or V-H +-PPase activity under salt stress.
文摘Soil and tissue analyses are usually used in identifying potassium(K) deficiencies and predicting K fertilizer requirements of crops.The critical levels of both soil and fresh leaf tissue at seventh leaf stage were developed and assessed for canola,chickpea and sunflower grown on two Saskatchewan,soils,with six rates of K fertilizer supply, in a growth chamber experiment.The available potassium in soils was determined by two methods:1)resin strip extraction, and 2) NH4OAC extraction. The potassium in fresh leaves was determined at seventh leaf stage by a simple procedure using a common garlic press and injector to extract the plant sap and testing the sap with a handheld ion selection electrode meter. The results shoWed significant relationships between the resin strip extractable K and NH4OAC extractable K, and between the plant uptake of total K and the supply of available K in the soils determined by the two methods. Good relationships were also found between the potassium in fresh leaves and the plant uptake of total K for canola, chickpea and sunflower.The resin strip extraction for K was calibrated using common NH4OAC extraction, and recommended for routine analyses because of its simplicity and sensitivity.
基金the National Natural Science Foundation of China (No. 30500189)
文摘Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.