Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,althoug...Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,although maize consumes a large amount of K fertilizer,the K uptake/utilization efficiency(KUE)of maize cultivars is relatively low.Elucidation of KUE mechanisms and development of maize cultivars with higher KUE are needed.Maize KUE is determined by K+uptake,transport,and remobilization,which depend on a variety of K+channels and transporters.We review basic information about K+channels and transporters in maize,their functions and regulation,and the roles of K+in nitrogen transport,sugar transport,and salt tolerance.We discuss challenges and prospects for maize KUE improvement.展开更多
Soil salinity causes the negative effects on the growth and yield of crops. In this study, two sweet potato (Ipomoea batatas L.) cultivars, Xushu 28 (X-28) and Okinawa 100 (O-100), were examined under 50 and 100...Soil salinity causes the negative effects on the growth and yield of crops. In this study, two sweet potato (Ipomoea batatas L.) cultivars, Xushu 28 (X-28) and Okinawa 100 (O-100), were examined under 50 and 100 mmol L-1 NaCI stress. X-28 cultivar is relatively high salt tolerant than O-100 cultivar. Interestingly, real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that sweet potato high-affinity K^+ transporter 1 (IbHKT1) gene expression was highly induced by 50 and 100 mmol L-1 NaCI stress in the stems of X-28 cultivar than in those of O-100 cultivar, but only slightly induced by these stresses in the leaves and fibrous roots in both cultivars. To characterize the function of IbHKT1 transporter, we performed ion-flux analysis in tobacco transient system and yeast complementation. Tobacco transient assay showed that IbHKT1 could uptake sodium (Na^+). Yeast complementation assay showed that IbHKT1 could take up K^+ in 50 mmol L^-1 K^+ medium without the presence of NaCI. Moreover, Na^+ uptake significantly increased in yeast overexpressing IbHKTI. These results showed that IbHKT1 transporter could have K^+-Na^+ symport function in yeast. Therefore, the modes of action of IbHKT1 in transgenic yeast could differ from the mode of action of the other HKT1 transporters in class I. Potentially, IbHKT1 could be used to improve the salt tolerance nature in sweet potato.展开更多
In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in Ashyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(Ⅲ)) were...In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in Ashyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(Ⅲ)) were studied using Pteris vittata L. under sand culture. Higher concentrations of phosphate were found to inhibit accumulation of arsenate and arsenite in the fronds of P. vittata. The reduction in As accumulation was greater in old fronds than in young fronds, and relatively weak in root and rhizome. Moderate increases, from 0.05 to 0.3 mmol/L, in phosphate reduced uptake of As(Ⅲ) more than As(Ⅴ), while the reverse was observed at high concentrations of phosphate (≥1.0 mmol/L). Phosphate apparently reduced As transport and the proportion of As accumulated in fronds of P. vittata when As was supplied as As(Ⅴ). It may in part be due to competition between phosphorus and As(Ⅴ) during transport. In contrast, phosphate had a much smaller effect on As transport when the As was supplied as As(Ⅲ). Therefore, the results from present experiments indicates that a higher concentration of phosphate suppressed As accumulation and transport in P. vittata, especially in the fronds, when exposed to As(Ⅴ), but the suppression of phosphate to As transport may be insignificant when P. vittata exposed to As(Ⅲ) under sand culture conditions. The finding will help to understand the interaction of P and As during their uptake process in P. vittata.展开更多
Glial glutamate transporter-1(GLT-1)is the predominant subtype of glutamate transporters and is responsible for the clearance of extracellular glutamate and for limiting the concentration of extracellular glutamate.Ou...Glial glutamate transporter-1(GLT-1)is the predominant subtype of glutamate transporters and is responsible for the clearance of extracellular glutamate and for limiting the concentration of extracellular glutamate.Our previous studies have shown that the up-regulation of GLT-1 expression plays an important role展开更多
The growth, chlorophyll composition, photosynthesis, respiration, K uptake and root K+ secretion offlue-cured tobacco as thected by different concentrations of N supplied as urea, NaNO3 and NH4NO3 werestudied under th...The growth, chlorophyll composition, photosynthesis, respiration, K uptake and root K+ secretion offlue-cured tobacco as thected by different concentrations of N supplied as urea, NaNO3 and NH4NO3 werestudied under the experimental condition of sand culture. The results showed that the content of K in thefiue-cured tobacco was not merely related with root vitality and uptake but also closely related with root cellmembrane structure and K+ secretion.展开更多
K+ is the most abundant cation in plant cells and plays an important role in many ways.K+ uptake of plant has respect to its salt resistant capacity.There are two categories of channel transportation for plants to u...K+ is the most abundant cation in plant cells and plays an important role in many ways.K+ uptake of plant has respect to its salt resistant capacity.There are two categories of channel transportation for plants to uptake K+,one is through K+ channels and the other is through nonselective cation channels(NSCCs).The transmembrane localization of K+ may change membrane potential(MP).In this paper,three wheat varieties with different salt tolerance were selected and the MP was measured by microelectrode during K+ uptake.The results showed that the effects of K+ uptake on MP through K+ channels or NSCCs were distinct.K+ influx through K+ channels led to MP hyperpolarization,while K+ influx through NSCCs resulted in depolarization.Diverse MP alteration of wheat varieties with different salt tolerance was mainly due to NSCCs-mediated K+ uptake.Compared with the salt-tolerant wheat,the MP hyperpolarization during K+ uptake of saltsensitive wheat was much more evident,probably because of the cation outflux through NSCCs during this process.展开更多
Potassium(K^(+))is a necessary nutrient for plant growth and crop production.The K^(+)transporter plays crucial roles in the absorption and transport of K^(+)in plants.Most K^(+)transporters in Arabidopsis have been r...Potassium(K^(+))is a necessary nutrient for plant growth and crop production.The K^(+)transporter plays crucial roles in the absorption and transport of K^(+)in plants.Most K^(+)transporters in Arabidopsis have been reported,but AtKUP12,which is a member of the KT/KUP/HAK family,has not yet been the subject of relevant in-depth research.In the present study,we demonstrated that AtKUP12 plays a crucial role in K^(+)uptake in Arabidopsis under 100μM low-K^(+)and 125 mM salt stress conditions.AtKUP12 transcripts were induced by K^(+)deficiency and salt stress.We analyzed the K^(+)uptake of AtKUP12 using the K^(+)uptake-deficient yeast R5421 and Arabidopsis mutant atkup12.Transformation with AtKUP12 rescued the growth defect of mutant yeast and atkup12 mutant plants at the low-K^(+)concentration,which suggested that AtKUP12 might be involved in high-affinity K^(+)uptake in low-K^(+)environments.In comparison to the wild-type(WT)and atkup12-AtKUP12 complementation lines,atkup12 showed a dramatic reduction in potassium concentration,K^(+)/Na^(+)ratio,and root and shoot growth on 12-day-old seedlings under the salt conditions;however,there was no significant difference between the complementation and WT lines.Taken together,these results demonstrate that AtKUP12 might participate in salt tolerance in Arabidopsis through K^(+)uptake and K^(+)/Na^(+)homeostasis.展开更多
Brassinosteroids(BRs)are steroid hormones that function in plant growth and development and response to environmental stresses and nutrient supplies.However,few studies have investigated the effect of BRs in modulatin...Brassinosteroids(BRs)are steroid hormones that function in plant growth and development and response to environmental stresses and nutrient supplies.However,few studies have investigated the effect of BRs in modulating the physiological response to nitrogen(N)supply in maize.In the present study,BR signalingdeficient mutant zmbri1-RNAi lines and exogenous application of 2,4-epibrassinolide(e BL)were used to study the role of BRs in the regulation of physiological response in maize seedlings supplied with N.Exogenous application of e BL increased primary root length and plant biomass,but zmbri1 plants showed shorter primary roots and less plant biomass than wild-type plants under low N(LN)and normal N(NN)conditions.LN induced the expression of the BR signaling-associated genes Zm DWF4,Zm CPD,Zm DET2,and Zm BZR1 and the production of longer primary roots than NN.Knockdown of Zm BRI1 weakened the biological effects of LN-induced primary root elongation.e BL treatment increased N accumulation in shoots and roots of maize seedlings exposed to LN or NN treatment.Correspondingly,zmbri1 plants showed lower N accumulation in shoots and roots than wild-type plants.Along with reduced N accumulation,zmbri1 plants showed lower NO3-fluxes and^(15)NO_(3)^(-)uptake.The expression of nitrate transporter(NRT)genes(Zm NPF6.4,Zm NPF6.6,Zm NRT2.1,Zm NRT2.2)was lower in zmbri1 than in wild-type roots,but e BL treatments up-regulated the transcript expression of NRT genes.Thus,BRs modulated N physiological response and regulated the transcript expression of NRT genes to promote N uptake in maize.展开更多
BACKGROUND Colorectal cancer(CRC)is a worldwide problem,which has been associated with changes in diet and lifestyle pattern.As a result of colonic fermentation of dietary fibres,short chain free fatty acids are gener...BACKGROUND Colorectal cancer(CRC)is a worldwide problem,which has been associated with changes in diet and lifestyle pattern.As a result of colonic fermentation of dietary fibres,short chain free fatty acids are generated which activate free fatty acid receptors(FFAR)2 and 3.FFAR2 and FFAR3 genes are abundantly expressed in colonic epithelium and play an important role in the metabolic homeostasis of colonic epithelial cells.Earlier studies point to the involvement of FFAR2 in colorectal carcinogenesis.AIM To understand the role of short chain FFARs in CRC.METHODS Transcriptome analysis console software was used to analyse microarray data from CRC patients and cell lines.We employed short-hairpin RNA mediated down regulation of FFAR2 and FFAR3 genes,which was validated using quantitative real time polymerase chain reaction.Assays for glucose uptake and cyclic adenosine monophosphate(cAMP)generation was done along with immunofluorescence studies to study the effects of FFAR2/FFAR3 knockdown.For measuring cell proliferation,we employed real time electrical impedancebased assay available from xCELLigence.RESULTS Microarray data analysis of CRC patient samples showed a significant down regulation of FFAR2 gene expression.This prompted us to study the FFAR2 in CRC.Since,FFAR3 shares significant structural and functional homology with FFAR2,we knocked down both these receptors in CRC cell line HCT 116.These modified cell lines exhibited higher proliferation rate and were found to have increased glucose uptake as well as increased level of glucose transporter 1.Since,FFAR2 and FFAR3 signal through G protein subunit(Gαi),knockdown of these receptors was associated with increased cAMP.Inhibition of protein kinase A(PKA)did not alter the growth and proliferation of these cells indicating a mechanism independent of cAMP/PKA pathway.CONCLUSION Our results suggest role of FFAR2/FFAR3 genes in increased proliferation of colon cancer cells via enhanced glucose uptake and exclude the role of PKA mediated cAMP signalling.Alternate pathways could be involved that would ultimately result in increased cell proliferation as a result of down regulated FFAR2/FFAR3 genes.This study paves the way to understand the mechanism of action of short chain FFARs in CRC.展开更多
BACKGROUND Uncarboxylated osteocalcin(GluOC)has been reported to improve glucose metabolism,prevent type 2 diabetes,and decrease the severity of obesity in mice with type 2 diabetes.GluOC can increase glucose uptake i...BACKGROUND Uncarboxylated osteocalcin(GluOC)has been reported to improve glucose metabolism,prevent type 2 diabetes,and decrease the severity of obesity in mice with type 2 diabetes.GluOC can increase glucose uptake in a variety of cells.Glucose metabolism is the main source of energy for osteoblast proliferation and differentiation.We hypothesized that decarboxylated osteocalcin(dcOC),a kind of GluOC,can increase glucose uptake in MG63 cells(osteoblast-like osteosarcoma cells)and influence their proliferation and differentiation.AIM To investigate the effects of dcOC on glucose uptake in human osteoblast-like osteosarcoma cells and the possible signaling pathways involved.METHODS MG63 cells(human osteoblast-like osteosarcoma cells)were treated with dcOC(0,0.3,3,10,or 30 ng/mL)for 1 and 72 h,and glucose uptake was measured by flow cytometry.The effect of dcOC on cell proliferation was measured with a CCK-8 assay,and alkaline phosphatase(ALP)enzyme activity was measured.PI3K was inhibited with LY294002,and hypoxia-inducible factor 1 alpha(HIF-1α)was silenced with siRNA.Then,GPRC6A(G protein-coupled receptor family C group 6 subtype A),total Akt,phosphorylated Akt,HIF-1α,and glucose transporter 1(GLUT1)levels were measured by Western blot to elucidate the possible pathways by which dcOC modulates glucose uptake.RESULTS The glucose uptake of MG63 cells was significantly increased compared with that of the paired control cells after short-term(1 h)treatment with dcOC at different concentrations(0.3,3,and 10 ng/mL groups,P<0.01;30 ng/mL group,P<0.05).Glucose uptake of MG63 cells was significantly increased compared with that of the paired control cells after long-term(72 h)treatment with dcOC at different concentrations(0.3,3,and 10 ng/mL groups,P<0.01;30 ng/mL group,P<0.05).DcOC triggered Akt phosphorylation in a dose-dependent manner,and the most effective stimulatory concentration of dcOC for short-term(1 h)was 3 ng/mL(P<0.01).LY294002 abolished the dcOC-mediated(1 h)promotion of Akt phosphorylation and glucose uptake without affecting GLUT1 protein expression.Long-term dcOC stimulation triggered Akt phosphorylation and increased the protein levels of HIF-1α,GLUT1,and Runx2 in a dose-dependent manner.Inhibition of HIF-1αwith siRNA abolished the dcOC-mediated glucose uptake and substantially decreased GLUT1 protein expression.DcOC interven-tion promoted cell proliferation in a time-and dose-dependent manner as determined by the CCK-8 assay.Treatment with both 3 ng/mL and 10 ng/mL dcOC affected the ALP activity in MG63 cells after 72 h(P<0.01).CONCLUSION Short-and long-term dcOC treatment can increase glucose uptake and affect proliferation and ALP activity in MG63 cells.This effect may occur through the PI3K/Akt,HIF-1α,and GLUT1 signaling factors.展开更多
Icariin,a major prenylated flavonoid found in Epimedium spp.,is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer’s disease.In this stud...Icariin,a major prenylated flavonoid found in Epimedium spp.,is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer’s disease.In this study,we investigated the neuroprotective mechanism of icariin in an APP/PS1/Tau triple-transgenic mouse model of Alzheimer’s disease.We performed behavioral tests,pathological examination,and western blot assay,and found that memory deficits of the model mice were obviously improved,neuronal and synaptic damage in the cerebral cortex was substantially mitigated,and amyloid-βaccumulation and tau hyperphosphorylation were considerably reduced after 5 months of intragastric administration of icariin at a dose of 60 mg/kg body weight per day.Furthermore,deficits of proteins in the insulin signaling pathway and their phosphorylation levels were significantly reversed,including the insulin receptor,insulin receptor substrate 1,phosphatidylinositol-3-kinase,protein kinase B,and glycogen synthase kinase 3β,and the levels of glucose transporter 1 and 3 were markedly increased.These findings suggest that icariin can improve learning and memory impairments in the mouse model of Alzheimer’s disease by regulating brain insulin signaling and glucose transporters,which lays the foundation for potential clinical application of icariin in the prevention and treatment of Alzheimer’s disease.展开更多
Increasing evidence, including from our laboratory, has revealed that opening of ATP sensitive potassium channels(K-ATP channels) plays the neuronal protective roles both in vivo and in vitro. Thus K-ATP channel opene...Increasing evidence, including from our laboratory, has revealed that opening of ATP sensitive potassium channels(K-ATP channels) plays the neuronal protective roles both in vivo and in vitro. Thus K-ATP channel openers(KCOs) have been proposed as potential neuroprotectants. Our previous studies demonstrated that K-ATP channels could regulate glutamate uptake activity in PC12 cells as well as in synaptosomes of rats. Since glutamate transporters(GluTs) of astrocytes play crucial roles in glutamate uptake and KATP channels are also expressed in astrocytes, the present study showed whether and how KATP channels regulated the function of GluTs in primary cultured astrocytes. The results showed that nonselective KCO pinacidil, selective mitochondrial KCO diazoxide, novel, and blood-brain barrier permeable KCO iptakalim could enhance glutamate uptake, except for the sarcolemmal KCO P1075. Moreover pinacidil, diazoxide, and iptakalim reversed the inhibition of glutamate uptake induced by 1-methyl-4-phenylpyridinium(MPP+). These potentiated effects were completely abolished by mitochondrial K-ATP blocker 5-hydroxydecanoate. Furthermore, either diazoxide or iptakalim could inhibit MPP+-induced elevation of reactive oxygen species (ROS) and phosphorylation of protein kinases C(PKC). These findings are the first to demonstrate that activation of K-ATP channel, especially mitochondrial K-ATP channel, improves the function of GluTs in astrocytes due to reducing ROS production and downregulating PKC phosphorylation. Therefore, the present study not only reveals a novel pharmacological profile of KCOs as regulators of GluTs, but also provides a new strategy for neuroprotection.展开更多
The mechanisms of Gardeniae Fructus (GF) for anti-hyperglycemic action were demonstrated in streptozotocin (STZ)-diabetic mice. Six hours after single intraperitoneal administration of GF (300 mg/kg) or H2O into 3 hou...The mechanisms of Gardeniae Fructus (GF) for anti-hyperglycemic action were demonstrated in streptozotocin (STZ)-diabetic mice. Six hours after single intraperitoneal administration of GF (300 mg/kg) or H2O into 3 hour-fasted STZ-diabetic mice, glucose and insulin tolerances were assessed by intraperitoneal glucose (1.5 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Effects of GF on insulin signaling pathways in soleus muscle such as glucose uptake, expression of glucose transporter 4 (GLUT4) in the plasma membrane and phosphorylation of Akt (P-Akt) in cytosolic fraction were examined in STZ-diabetic mice. In IPGTT test, GF significantly accelerated clearance of exogenous glucose and its glucose-lowering action was greater than H2O-treated controlin STZ-diabetic mice. GF also promoted an exogenous glucose-increased insulin level in STZ-diabetic mice. In IPITT test, GF decreased glucose level to the greater extent than H2O-treated control in STZ-diabetic mice. Furthermore, GF significantly decreased high HOMA-IR in STZ-diabetic mice from 21.6 ± 2.4 to 12.4 ± 1.9 (mg/dl × μU/ml). These results implied that GF improved insulin resistance in STZ-diabetic mice. GF increased glucose uptake of soleus muscle 1.5 times greater than H2O-treated control in STZ-diabetic mice. GF enlarged insulin (10 nmol/ml)-increased glucose uptake to 1.8 time-greater. Correspondingly, GF increased expression of GLUT4 in the plasma membrane of soleus muscle to 1.4 time-greater, and P-Akt in the cytosolic fraction of soleus muscle to 1.9 time-greater than those in H2O-treated control. In conclusion, the improvement of GF on insulin resistance is associated with the repair of insulin signaling via P-Akt, GLUT4 and glucose uptake pathway in soleus muscle of STZ-diabetic mice.展开更多
基金supported by the National Key Research and Development Program of China (2021YFF1000500)National Natural Science Foundation of China (32025004, 32161133014, and31921001)Beijing Outstanding University Discipline Program。
文摘Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,although maize consumes a large amount of K fertilizer,the K uptake/utilization efficiency(KUE)of maize cultivars is relatively low.Elucidation of KUE mechanisms and development of maize cultivars with higher KUE are needed.Maize KUE is determined by K+uptake,transport,and remobilization,which depend on a variety of K+channels and transporters.We review basic information about K+channels and transporters in maize,their functions and regulation,and the roles of K+in nitrogen transport,sugar transport,and salt tolerance.We discuss challenges and prospects for maize KUE improvement.
基金supported by the China Agriculture Research System (CARS-10,Sweetpotato)the Agricultural Science and Technology Innovation Program of Jiangsu Province,China (CX(13)2032)the China-Korea Young Scientist Exchange Program
文摘Soil salinity causes the negative effects on the growth and yield of crops. In this study, two sweet potato (Ipomoea batatas L.) cultivars, Xushu 28 (X-28) and Okinawa 100 (O-100), were examined under 50 and 100 mmol L-1 NaCI stress. X-28 cultivar is relatively high salt tolerant than O-100 cultivar. Interestingly, real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that sweet potato high-affinity K^+ transporter 1 (IbHKT1) gene expression was highly induced by 50 and 100 mmol L-1 NaCI stress in the stems of X-28 cultivar than in those of O-100 cultivar, but only slightly induced by these stresses in the leaves and fibrous roots in both cultivars. To characterize the function of IbHKT1 transporter, we performed ion-flux analysis in tobacco transient system and yeast complementation. Tobacco transient assay showed that IbHKT1 could uptake sodium (Na^+). Yeast complementation assay showed that IbHKT1 could take up K^+ in 50 mmol L^-1 K^+ medium without the presence of NaCI. Moreover, Na^+ uptake significantly increased in yeast overexpressing IbHKTI. These results showed that IbHKT1 transporter could have K^+-Na^+ symport function in yeast. Therefore, the modes of action of IbHKT1 in transgenic yeast could differ from the mode of action of the other HKT1 transporters in class I. Potentially, IbHKT1 could be used to improve the salt tolerance nature in sweet potato.
基金Project supported by the National Foundation for Distinguished Youthof China(No.40325003)the National Natural Science Foun-dation of China(No.40232022).
文摘In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in Ashyperaccumulator, uptake and transport of arsenate (As(V)) and arsenite (As(Ⅲ)) were studied using Pteris vittata L. under sand culture. Higher concentrations of phosphate were found to inhibit accumulation of arsenate and arsenite in the fronds of P. vittata. The reduction in As accumulation was greater in old fronds than in young fronds, and relatively weak in root and rhizome. Moderate increases, from 0.05 to 0.3 mmol/L, in phosphate reduced uptake of As(Ⅲ) more than As(Ⅴ), while the reverse was observed at high concentrations of phosphate (≥1.0 mmol/L). Phosphate apparently reduced As transport and the proportion of As accumulated in fronds of P. vittata when As was supplied as As(Ⅴ). It may in part be due to competition between phosphorus and As(Ⅴ) during transport. In contrast, phosphate had a much smaller effect on As transport when the As was supplied as As(Ⅲ). Therefore, the results from present experiments indicates that a higher concentration of phosphate suppressed As accumulation and transport in P. vittata, especially in the fronds, when exposed to As(Ⅴ), but the suppression of phosphate to As transport may be insignificant when P. vittata exposed to As(Ⅲ) under sand culture conditions. The finding will help to understand the interaction of P and As during their uptake process in P. vittata.
文摘Glial glutamate transporter-1(GLT-1)is the predominant subtype of glutamate transporters and is responsible for the clearance of extracellular glutamate and for limiting the concentration of extracellular glutamate.Our previous studies have shown that the up-regulation of GLT-1 expression plays an important role
文摘The growth, chlorophyll composition, photosynthesis, respiration, K uptake and root K+ secretion offlue-cured tobacco as thected by different concentrations of N supplied as urea, NaNO3 and NH4NO3 werestudied under the experimental condition of sand culture. The results showed that the content of K in thefiue-cured tobacco was not merely related with root vitality and uptake but also closely related with root cellmembrane structure and K+ secretion.
基金supported by the National Natural Science Foundation of China (30671240,30871588)the National Basic Research Program of China (973 Program of China,2007CB109303)
文摘K+ is the most abundant cation in plant cells and plays an important role in many ways.K+ uptake of plant has respect to its salt resistant capacity.There are two categories of channel transportation for plants to uptake K+,one is through K+ channels and the other is through nonselective cation channels(NSCCs).The transmembrane localization of K+ may change membrane potential(MP).In this paper,three wheat varieties with different salt tolerance were selected and the MP was measured by microelectrode during K+ uptake.The results showed that the effects of K+ uptake on MP through K+ channels or NSCCs were distinct.K+ influx through K+ channels led to MP hyperpolarization,while K+ influx through NSCCs resulted in depolarization.Diverse MP alteration of wheat varieties with different salt tolerance was mainly due to NSCCs-mediated K+ uptake.Compared with the salt-tolerant wheat,the MP hyperpolarization during K+ uptake of saltsensitive wheat was much more evident,probably because of the cation outflux through NSCCs during this process.
基金This work was supported by the National Natural Science Foundation of China[Grant No.31860061]Opening of Key Laboratory of Autonomous Region[Grant No.2017D04026]Tianshan Youth Program[Grant No.2019Q013].
文摘Potassium(K^(+))is a necessary nutrient for plant growth and crop production.The K^(+)transporter plays crucial roles in the absorption and transport of K^(+)in plants.Most K^(+)transporters in Arabidopsis have been reported,but AtKUP12,which is a member of the KT/KUP/HAK family,has not yet been the subject of relevant in-depth research.In the present study,we demonstrated that AtKUP12 plays a crucial role in K^(+)uptake in Arabidopsis under 100μM low-K^(+)and 125 mM salt stress conditions.AtKUP12 transcripts were induced by K^(+)deficiency and salt stress.We analyzed the K^(+)uptake of AtKUP12 using the K^(+)uptake-deficient yeast R5421 and Arabidopsis mutant atkup12.Transformation with AtKUP12 rescued the growth defect of mutant yeast and atkup12 mutant plants at the low-K^(+)concentration,which suggested that AtKUP12 might be involved in high-affinity K^(+)uptake in low-K^(+)environments.In comparison to the wild-type(WT)and atkup12-AtKUP12 complementation lines,atkup12 showed a dramatic reduction in potassium concentration,K^(+)/Na^(+)ratio,and root and shoot growth on 12-day-old seedlings under the salt conditions;however,there was no significant difference between the complementation and WT lines.Taken together,these results demonstrate that AtKUP12 might participate in salt tolerance in Arabidopsis through K^(+)uptake and K^(+)/Na^(+)homeostasis.
基金supported by National Key Research and Development Program of China(2017YFD0300410)。
文摘Brassinosteroids(BRs)are steroid hormones that function in plant growth and development and response to environmental stresses and nutrient supplies.However,few studies have investigated the effect of BRs in modulating the physiological response to nitrogen(N)supply in maize.In the present study,BR signalingdeficient mutant zmbri1-RNAi lines and exogenous application of 2,4-epibrassinolide(e BL)were used to study the role of BRs in the regulation of physiological response in maize seedlings supplied with N.Exogenous application of e BL increased primary root length and plant biomass,but zmbri1 plants showed shorter primary roots and less plant biomass than wild-type plants under low N(LN)and normal N(NN)conditions.LN induced the expression of the BR signaling-associated genes Zm DWF4,Zm CPD,Zm DET2,and Zm BZR1 and the production of longer primary roots than NN.Knockdown of Zm BRI1 weakened the biological effects of LN-induced primary root elongation.e BL treatment increased N accumulation in shoots and roots of maize seedlings exposed to LN or NN treatment.Correspondingly,zmbri1 plants showed lower N accumulation in shoots and roots than wild-type plants.Along with reduced N accumulation,zmbri1 plants showed lower NO3-fluxes and^(15)NO_(3)^(-)uptake.The expression of nitrate transporter(NRT)genes(Zm NPF6.4,Zm NPF6.6,Zm NRT2.1,Zm NRT2.2)was lower in zmbri1 than in wild-type roots,but e BL treatments up-regulated the transcript expression of NRT genes.Thus,BRs modulated N physiological response and regulated the transcript expression of NRT genes to promote N uptake in maize.
文摘BACKGROUND Colorectal cancer(CRC)is a worldwide problem,which has been associated with changes in diet and lifestyle pattern.As a result of colonic fermentation of dietary fibres,short chain free fatty acids are generated which activate free fatty acid receptors(FFAR)2 and 3.FFAR2 and FFAR3 genes are abundantly expressed in colonic epithelium and play an important role in the metabolic homeostasis of colonic epithelial cells.Earlier studies point to the involvement of FFAR2 in colorectal carcinogenesis.AIM To understand the role of short chain FFARs in CRC.METHODS Transcriptome analysis console software was used to analyse microarray data from CRC patients and cell lines.We employed short-hairpin RNA mediated down regulation of FFAR2 and FFAR3 genes,which was validated using quantitative real time polymerase chain reaction.Assays for glucose uptake and cyclic adenosine monophosphate(cAMP)generation was done along with immunofluorescence studies to study the effects of FFAR2/FFAR3 knockdown.For measuring cell proliferation,we employed real time electrical impedancebased assay available from xCELLigence.RESULTS Microarray data analysis of CRC patient samples showed a significant down regulation of FFAR2 gene expression.This prompted us to study the FFAR2 in CRC.Since,FFAR3 shares significant structural and functional homology with FFAR2,we knocked down both these receptors in CRC cell line HCT 116.These modified cell lines exhibited higher proliferation rate and were found to have increased glucose uptake as well as increased level of glucose transporter 1.Since,FFAR2 and FFAR3 signal through G protein subunit(Gαi),knockdown of these receptors was associated with increased cAMP.Inhibition of protein kinase A(PKA)did not alter the growth and proliferation of these cells indicating a mechanism independent of cAMP/PKA pathway.CONCLUSION Our results suggest role of FFAR2/FFAR3 genes in increased proliferation of colon cancer cells via enhanced glucose uptake and exclude the role of PKA mediated cAMP signalling.Alternate pathways could be involved that would ultimately result in increased cell proliferation as a result of down regulated FFAR2/FFAR3 genes.This study paves the way to understand the mechanism of action of short chain FFARs in CRC.
基金Supported by Provincial Science and Technology Department Natural Fund Guidance Project,No.2019-ZD-0774National Natural Science Foundation of China,No.81470998+1 种基金Liaoning Ministry of Education,No.LQNK201715and Liaoning Provincial Doctor Start up Fund,No.20180540008.
文摘BACKGROUND Uncarboxylated osteocalcin(GluOC)has been reported to improve glucose metabolism,prevent type 2 diabetes,and decrease the severity of obesity in mice with type 2 diabetes.GluOC can increase glucose uptake in a variety of cells.Glucose metabolism is the main source of energy for osteoblast proliferation and differentiation.We hypothesized that decarboxylated osteocalcin(dcOC),a kind of GluOC,can increase glucose uptake in MG63 cells(osteoblast-like osteosarcoma cells)and influence their proliferation and differentiation.AIM To investigate the effects of dcOC on glucose uptake in human osteoblast-like osteosarcoma cells and the possible signaling pathways involved.METHODS MG63 cells(human osteoblast-like osteosarcoma cells)were treated with dcOC(0,0.3,3,10,or 30 ng/mL)for 1 and 72 h,and glucose uptake was measured by flow cytometry.The effect of dcOC on cell proliferation was measured with a CCK-8 assay,and alkaline phosphatase(ALP)enzyme activity was measured.PI3K was inhibited with LY294002,and hypoxia-inducible factor 1 alpha(HIF-1α)was silenced with siRNA.Then,GPRC6A(G protein-coupled receptor family C group 6 subtype A),total Akt,phosphorylated Akt,HIF-1α,and glucose transporter 1(GLUT1)levels were measured by Western blot to elucidate the possible pathways by which dcOC modulates glucose uptake.RESULTS The glucose uptake of MG63 cells was significantly increased compared with that of the paired control cells after short-term(1 h)treatment with dcOC at different concentrations(0.3,3,and 10 ng/mL groups,P<0.01;30 ng/mL group,P<0.05).Glucose uptake of MG63 cells was significantly increased compared with that of the paired control cells after long-term(72 h)treatment with dcOC at different concentrations(0.3,3,and 10 ng/mL groups,P<0.01;30 ng/mL group,P<0.05).DcOC triggered Akt phosphorylation in a dose-dependent manner,and the most effective stimulatory concentration of dcOC for short-term(1 h)was 3 ng/mL(P<0.01).LY294002 abolished the dcOC-mediated(1 h)promotion of Akt phosphorylation and glucose uptake without affecting GLUT1 protein expression.Long-term dcOC stimulation triggered Akt phosphorylation and increased the protein levels of HIF-1α,GLUT1,and Runx2 in a dose-dependent manner.Inhibition of HIF-1αwith siRNA abolished the dcOC-mediated glucose uptake and substantially decreased GLUT1 protein expression.DcOC interven-tion promoted cell proliferation in a time-and dose-dependent manner as determined by the CCK-8 assay.Treatment with both 3 ng/mL and 10 ng/mL dcOC affected the ALP activity in MG63 cells after 72 h(P<0.01).CONCLUSION Short-and long-term dcOC treatment can increase glucose uptake and affect proliferation and ALP activity in MG63 cells.This effect may occur through the PI3K/Akt,HIF-1α,and GLUT1 signaling factors.
基金supported by the National Natural Science Foundation of China, Nos. 82060727 (to FJ), 81660599 (to FJ)the National Innovation Training Project for College Students, No. 201910661009 (to FJ)the Science and Technology Cooperation Project of Zunyi Science and Technology Bureau and Zunyi Medical University, No. (2019) 47 (to XLF)
文摘Icariin,a major prenylated flavonoid found in Epimedium spp.,is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer’s disease.In this study,we investigated the neuroprotective mechanism of icariin in an APP/PS1/Tau triple-transgenic mouse model of Alzheimer’s disease.We performed behavioral tests,pathological examination,and western blot assay,and found that memory deficits of the model mice were obviously improved,neuronal and synaptic damage in the cerebral cortex was substantially mitigated,and amyloid-βaccumulation and tau hyperphosphorylation were considerably reduced after 5 months of intragastric administration of icariin at a dose of 60 mg/kg body weight per day.Furthermore,deficits of proteins in the insulin signaling pathway and their phosphorylation levels were significantly reversed,including the insulin receptor,insulin receptor substrate 1,phosphatidylinositol-3-kinase,protein kinase B,and glycogen synthase kinase 3β,and the levels of glucose transporter 1 and 3 were markedly increased.These findings suggest that icariin can improve learning and memory impairments in the mouse model of Alzheimer’s disease by regulating brain insulin signaling and glucose transporters,which lays the foundation for potential clinical application of icariin in the prevention and treatment of Alzheimer’s disease.
文摘Increasing evidence, including from our laboratory, has revealed that opening of ATP sensitive potassium channels(K-ATP channels) plays the neuronal protective roles both in vivo and in vitro. Thus K-ATP channel openers(KCOs) have been proposed as potential neuroprotectants. Our previous studies demonstrated that K-ATP channels could regulate glutamate uptake activity in PC12 cells as well as in synaptosomes of rats. Since glutamate transporters(GluTs) of astrocytes play crucial roles in glutamate uptake and KATP channels are also expressed in astrocytes, the present study showed whether and how KATP channels regulated the function of GluTs in primary cultured astrocytes. The results showed that nonselective KCO pinacidil, selective mitochondrial KCO diazoxide, novel, and blood-brain barrier permeable KCO iptakalim could enhance glutamate uptake, except for the sarcolemmal KCO P1075. Moreover pinacidil, diazoxide, and iptakalim reversed the inhibition of glutamate uptake induced by 1-methyl-4-phenylpyridinium(MPP+). These potentiated effects were completely abolished by mitochondrial K-ATP blocker 5-hydroxydecanoate. Furthermore, either diazoxide or iptakalim could inhibit MPP+-induced elevation of reactive oxygen species (ROS) and phosphorylation of protein kinases C(PKC). These findings are the first to demonstrate that activation of K-ATP channel, especially mitochondrial K-ATP channel, improves the function of GluTs in astrocytes due to reducing ROS production and downregulating PKC phosphorylation. Therefore, the present study not only reveals a novel pharmacological profile of KCOs as regulators of GluTs, but also provides a new strategy for neuroprotection.
文摘The mechanisms of Gardeniae Fructus (GF) for anti-hyperglycemic action were demonstrated in streptozotocin (STZ)-diabetic mice. Six hours after single intraperitoneal administration of GF (300 mg/kg) or H2O into 3 hour-fasted STZ-diabetic mice, glucose and insulin tolerances were assessed by intraperitoneal glucose (1.5 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Effects of GF on insulin signaling pathways in soleus muscle such as glucose uptake, expression of glucose transporter 4 (GLUT4) in the plasma membrane and phosphorylation of Akt (P-Akt) in cytosolic fraction were examined in STZ-diabetic mice. In IPGTT test, GF significantly accelerated clearance of exogenous glucose and its glucose-lowering action was greater than H2O-treated controlin STZ-diabetic mice. GF also promoted an exogenous glucose-increased insulin level in STZ-diabetic mice. In IPITT test, GF decreased glucose level to the greater extent than H2O-treated control in STZ-diabetic mice. Furthermore, GF significantly decreased high HOMA-IR in STZ-diabetic mice from 21.6 ± 2.4 to 12.4 ± 1.9 (mg/dl × μU/ml). These results implied that GF improved insulin resistance in STZ-diabetic mice. GF increased glucose uptake of soleus muscle 1.5 times greater than H2O-treated control in STZ-diabetic mice. GF enlarged insulin (10 nmol/ml)-increased glucose uptake to 1.8 time-greater. Correspondingly, GF increased expression of GLUT4 in the plasma membrane of soleus muscle to 1.4 time-greater, and P-Akt in the cytosolic fraction of soleus muscle to 1.9 time-greater than those in H2O-treated control. In conclusion, the improvement of GF on insulin resistance is associated with the repair of insulin signaling via P-Akt, GLUT4 and glucose uptake pathway in soleus muscle of STZ-diabetic mice.