To examine the application potential of hyperspectral remote sensing techniques in classifying very low-grade metamorphic belts, the composition of clay minerals and the cyrstallinity of illite from mudstones were mea...To examine the application potential of hyperspectral remote sensing techniques in classifying very low-grade metamorphic belts, the composition of clay minerals and the cyrstallinity of illite from mudstones were measured using XRD and VIS-SWIR (400—2500 nm) reflectance spectroscopy. Based on the illite cyrstallinity, Kbler Index (KI), the Early Triassic LuoLou Group and the Middle Triassic lower Baifeng Formation were classified as the lower Epizone with KID2q° ranging from 0.22 to 0.25, the upper Baifeng Formation as upper anchizone with KID2q° ranging from 0.26 to 0.33, and the Hekou Formation as lower anchizone with KID2q° ranging from 0.38 to 0.40. According to a KID2q° value of 0.43, it is possible that there may exist a local diagenetic zone in the upper strata. The illite cyrstallinity Kbler index and the metamorphic grade increase from the bottom to the top of the stratigraphic sequence. The metamorphic grade boundaries nearly match the stratigraphic boundaries, indicating a burial metamorphism nature for the stratigraphic sequence. From the bottom to the top of the sequence, the spectral absorption band center of clay minerals from fresh rocks is around 2200 nm. The absorption band centers change towards shorter wavelengths: the Luolou Group being at 2220 nm, the Baifeng Formation at 2217—2213 nm, the lower member of the Hekou Formation at 2214—2206 nm, and the upper member of the Hekou Formation at 2205—2197 nm. The spectral absorption band center of illite shows the same change pattern. These results indicate that very low-grade metamorphic belts can be subdivided using spectral indices of clay minerals, which are measured by using field portable spectroradiometers. However, it may not work well with satellite and airborne sensors.展开更多
Illite, a distinctive kind of clay minerals of potassiumalteration within the hydrothermal alteration zone, frequently occurs at the Tongchang porphyry copper deposit ore field. The illite crystallinity (IC) value and...Illite, a distinctive kind of clay minerals of potassiumalteration within the hydrothermal alteration zone, frequently occurs at the Tongchang porphyry copper deposit ore field. The illite crystallinity (IC) value and expandability are mainly affected by water/rock ratio or fluid flux. It was formed by illitization of plagioclase and micas during hydrothermal fluid-rock interaction within the porphyry body and near the contact zone with wall rocks. Moreover, the negative correlation between illite index (IC) and copper grade indicates that within the alteration zone, the smaller the illite crystallinity value, the higher the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are mainly controlled by temperature and time duration.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40072092) the Dust Storm Project (Grant No. KZCX20305-ADEC).
文摘To examine the application potential of hyperspectral remote sensing techniques in classifying very low-grade metamorphic belts, the composition of clay minerals and the cyrstallinity of illite from mudstones were measured using XRD and VIS-SWIR (400—2500 nm) reflectance spectroscopy. Based on the illite cyrstallinity, Kbler Index (KI), the Early Triassic LuoLou Group and the Middle Triassic lower Baifeng Formation were classified as the lower Epizone with KID2q° ranging from 0.22 to 0.25, the upper Baifeng Formation as upper anchizone with KID2q° ranging from 0.26 to 0.33, and the Hekou Formation as lower anchizone with KID2q° ranging from 0.38 to 0.40. According to a KID2q° value of 0.43, it is possible that there may exist a local diagenetic zone in the upper strata. The illite cyrstallinity Kbler index and the metamorphic grade increase from the bottom to the top of the stratigraphic sequence. The metamorphic grade boundaries nearly match the stratigraphic boundaries, indicating a burial metamorphism nature for the stratigraphic sequence. From the bottom to the top of the sequence, the spectral absorption band center of clay minerals from fresh rocks is around 2200 nm. The absorption band centers change towards shorter wavelengths: the Luolou Group being at 2220 nm, the Baifeng Formation at 2217—2213 nm, the lower member of the Hekou Formation at 2214—2206 nm, and the upper member of the Hekou Formation at 2205—2197 nm. The spectral absorption band center of illite shows the same change pattern. These results indicate that very low-grade metamorphic belts can be subdivided using spectral indices of clay minerals, which are measured by using field portable spectroradiometers. However, it may not work well with satellite and airborne sensors.
基金the National Natural Science Foundation of China(Nos.49733120 and 49873026)by the National Post-Doctor Foundation of China.
文摘Illite, a distinctive kind of clay minerals of potassiumalteration within the hydrothermal alteration zone, frequently occurs at the Tongchang porphyry copper deposit ore field. The illite crystallinity (IC) value and expandability are mainly affected by water/rock ratio or fluid flux. It was formed by illitization of plagioclase and micas during hydrothermal fluid-rock interaction within the porphyry body and near the contact zone with wall rocks. Moreover, the negative correlation between illite index (IC) and copper grade indicates that within the alteration zone, the smaller the illite crystallinity value, the higher the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are mainly controlled by temperature and time duration.