针对经典K–means算法对不均衡数据进行聚类时产生的"均匀效应"问题,提出一种基于近邻的不均衡数据聚类算法(Clustering algorithm for imbalanced data based on nearest neighbor,CABON).CABON算法首先对数据对象进行初始聚...针对经典K–means算法对不均衡数据进行聚类时产生的"均匀效应"问题,提出一种基于近邻的不均衡数据聚类算法(Clustering algorithm for imbalanced data based on nearest neighbor,CABON).CABON算法首先对数据对象进行初始聚类,通过定义的类别待定集来确定初始聚类结果中类别归属有待进一步核定的数据对象集合;并给出一种类别待定集的动态调整机制,利用近邻思想实现此集合中数据对象所属类别的重新划分,按照从集合边缘到中心的顺序将类别待定集中的数据对象依次归入其最近邻居所在的类别中,得到最终的聚类结果,以避免"均匀效应"对聚类结果的影响.将该算法与K–means、多中心的非平衡K_均值聚类方法(Imbalanced K–means clustering method with multiple centers,MC_IK)和非均匀数据的变异系数聚类算法(Coefficient of variation clustering for non-uniform data,CVCN)在人工数据集和真实数据集上分别进行实验对比,结果表明CABON算法能够有效消减K–means算法对不均衡数据聚类时所产生的"均匀效应",聚类效果明显优于K–means、MC_IK和CVCN算法.展开更多
目的针对真实复杂的工业场景下焊接件表面缺陷检测精度低、速度慢和图像噪声大等问题,提出一种基于卷积神经网络的改进YOLOv4焊接件表面缺陷检测算法。方法该模型基于YOLOv4算法,首先,考虑到存储和计算资源的限制,使用了轻量级网络Ghost...目的针对真实复杂的工业场景下焊接件表面缺陷检测精度低、速度慢和图像噪声大等问题,提出一种基于卷积神经网络的改进YOLOv4焊接件表面缺陷检测算法。方法该模型基于YOLOv4算法,首先,考虑到存储和计算资源的限制,使用了轻量级网络GhostNet替换YOLOv4的主干特征提取网络(Backbone)CSPDarknet53;其次,在GhostNet网络结构中嵌入改进的通道注意力机制,能够提高模型的学习能力且减少参数量;最后,引入K–means++聚类算法对焊接件表面缺陷数据集中待检测的标注框宽高进行聚类,使网络模型更容易检测到样本中的缺陷。结果实验结果表明,改进后的YOLOv4算法平均精度(mean Average Precision,mAP)为91.07%,检测速度达到48.11帧/s,模型尺寸为43.2 MB,比原始YOLOv4算法平均精度提升了4.61%,检测速度提高了26.59帧/s,模型尺寸缩减了82.37%。结论所提模型提高了焊接件表面缺陷检测的精度和速度,在工业表面缺陷检测中具有现实意义。展开更多
文摘针对经典K–means算法对不均衡数据进行聚类时产生的"均匀效应"问题,提出一种基于近邻的不均衡数据聚类算法(Clustering algorithm for imbalanced data based on nearest neighbor,CABON).CABON算法首先对数据对象进行初始聚类,通过定义的类别待定集来确定初始聚类结果中类别归属有待进一步核定的数据对象集合;并给出一种类别待定集的动态调整机制,利用近邻思想实现此集合中数据对象所属类别的重新划分,按照从集合边缘到中心的顺序将类别待定集中的数据对象依次归入其最近邻居所在的类别中,得到最终的聚类结果,以避免"均匀效应"对聚类结果的影响.将该算法与K–means、多中心的非平衡K_均值聚类方法(Imbalanced K–means clustering method with multiple centers,MC_IK)和非均匀数据的变异系数聚类算法(Coefficient of variation clustering for non-uniform data,CVCN)在人工数据集和真实数据集上分别进行实验对比,结果表明CABON算法能够有效消减K–means算法对不均衡数据聚类时所产生的"均匀效应",聚类效果明显优于K–means、MC_IK和CVCN算法.
文摘目的针对真实复杂的工业场景下焊接件表面缺陷检测精度低、速度慢和图像噪声大等问题,提出一种基于卷积神经网络的改进YOLOv4焊接件表面缺陷检测算法。方法该模型基于YOLOv4算法,首先,考虑到存储和计算资源的限制,使用了轻量级网络GhostNet替换YOLOv4的主干特征提取网络(Backbone)CSPDarknet53;其次,在GhostNet网络结构中嵌入改进的通道注意力机制,能够提高模型的学习能力且减少参数量;最后,引入K–means++聚类算法对焊接件表面缺陷数据集中待检测的标注框宽高进行聚类,使网络模型更容易检测到样本中的缺陷。结果实验结果表明,改进后的YOLOv4算法平均精度(mean Average Precision,mAP)为91.07%,检测速度达到48.11帧/s,模型尺寸为43.2 MB,比原始YOLOv4算法平均精度提升了4.61%,检测速度提高了26.59帧/s,模型尺寸缩减了82.37%。结论所提模型提高了焊接件表面缺陷检测的精度和速度,在工业表面缺陷检测中具有现实意义。