图像的超分辨率重建技术可以提升图像质量,改善图像视觉效果,在现实中具有很高的实用价值。针对基于K-SVD的超分辨率重建算法的不足,提出了一种基于稀疏K-SVD的单幅图像超分辨率重建算法。首先,采用稀疏K-SVD方法进行训练获得高低分辨...图像的超分辨率重建技术可以提升图像质量,改善图像视觉效果,在现实中具有很高的实用价值。针对基于K-SVD的超分辨率重建算法的不足,提出了一种基于稀疏K-SVD的单幅图像超分辨率重建算法。首先,采用稀疏K-SVD方法进行训练获得高低分辨率字典对,以待重建的低分辨率图像及其降采样作为字典训练的样本,提高了字典和待重建的低分辨率图像的相关性;然后,采用逐级放大的思想进行重建;最后,利用非局部均值的方法,进一步提高重建效果。实验表明,与基于K-SVD的超分辨率重建算法相比,本文算法重建图像的峰值信噪比平均提高了0.6 d B左右。重建图像在视觉效果上,也有一定程度的提升。展开更多
文摘图像的超分辨率重建技术可以提升图像质量,改善图像视觉效果,在现实中具有很高的实用价值。针对基于K-SVD的超分辨率重建算法的不足,提出了一种基于稀疏K-SVD的单幅图像超分辨率重建算法。首先,采用稀疏K-SVD方法进行训练获得高低分辨率字典对,以待重建的低分辨率图像及其降采样作为字典训练的样本,提高了字典和待重建的低分辨率图像的相关性;然后,采用逐级放大的思想进行重建;最后,利用非局部均值的方法,进一步提高重建效果。实验表明,与基于K-SVD的超分辨率重建算法相比,本文算法重建图像的峰值信噪比平均提高了0.6 d B左右。重建图像在视觉效果上,也有一定程度的提升。