期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于Tukey规则与初始中心点优化的K⁃means聚类改进算法 被引量:2
1
作者 柳菁 邱紫滢 +1 位作者 郭茂祖 余冬华 《数据采集与处理》 CSCD 北大核心 2023年第3期643-651,共9页
针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,... 针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,在核心子集上执行中心点逐个递增优化选择策略,选出初始中心点。在来自UCI的20个数据集上聚类结果表明,本文提出的算法优于K⁃means++聚类算法,有效地提升了聚类性能。 展开更多
关键词 数据挖掘 k⁃means聚类算法 Tukey规则 中心优化
下载PDF
基于邻域的K中心点聚类算法 被引量:32
2
作者 谢娟英 郭文娟 谢维信 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期16-22,共7页
提出一种基于邻域的K中心点聚类算法,该算法利用数据集样本的自然分布信息定义数据对象的邻域半径和相应邻域,选择位于样本分布密集区且相距较远的K个数据对象作为初始聚类中心,以期改进快速K中心点算法在选取初始中心点时有可能使多个... 提出一种基于邻域的K中心点聚类算法,该算法利用数据集样本的自然分布信息定义数据对象的邻域半径和相应邻域,选择位于样本分布密集区且相距较远的K个数据对象作为初始聚类中心,以期改进快速K中心点算法在选取初始中心点时有可能使多个初始中心位于同一类簇的潜在缺陷.通过UCI机器学习数据库数据集以及随机生成的带有噪音点的人工模拟数据集实验测试,表明提出的基于邻域的K中心点算法不仅具有很好的聚类效果,而且运行时间短,对噪音数据有很强的抗干扰性能,优于传统K中心点算法和Park等人的快速K中心点算法. 展开更多
关键词 邻域 k中心算法 样本密度 聚类 样本空间分布
下载PDF
改进的k中心点算法在茶叶拼配中的应用 被引量:7
3
作者 邢光林 胡一然 +1 位作者 孙翀 帖军 《中南民族大学学报(自然科学版)》 CAS 北大核心 2017年第4期126-130,共5页
为了提高茶叶拼配效率,节约人工成本,实现茶叶企业效益最大化,探讨了将茶叶拼配问题建模成多维层次空间聚类问题,并通过定义多维概念分层空间中的相似性度量准则,提出了改进的k中心点算法求解最优拼配方案,并引入Dewey编码提高了求解效... 为了提高茶叶拼配效率,节约人工成本,实现茶叶企业效益最大化,探讨了将茶叶拼配问题建模成多维层次空间聚类问题,并通过定义多维概念分层空间中的相似性度量准则,提出了改进的k中心点算法求解最优拼配方案,并引入Dewey编码提高了求解效率.根据真实数据集上的实验表明:同等实验条件下较人工拼配方式而言,文中所提出的茶叶拼配智能化求解方法大大提高了茶叶企业工作效率和经济利益. 展开更多
关键词 茶叶拼配 空间聚类 多维概念分层 DEWEY编码 k中心算法
下载PDF
基于稠密区域的K-medoids聚类算法 被引量:6
4
作者 赵湘民 陈曦 潘楚 《计算机工程与应用》 CSCD 北大核心 2016年第16期85-89,99,共6页
针对传统K-medoids聚类算法对初始中心点敏感,以及迭代次数较高等缺点,提出一种可行的初始化方法和中心点搜索更新策略。新算法首先利用密度可达思想为数据集中每个对象建立一个稠密区域,遴选出K个密度大且距离较远的稠密区域,把对应的... 针对传统K-medoids聚类算法对初始中心点敏感,以及迭代次数较高等缺点,提出一种可行的初始化方法和中心点搜索更新策略。新算法首先利用密度可达思想为数据集中每个对象建立一个稠密区域,遴选出K个密度大且距离较远的稠密区域,把对应的稠密区域的核心对象作为聚类算法的K个初始中心点;其次,把K个中心点搜索更新范围锁定在所选的K个有效稠密区域里。新算法在Iris、Wine、PId标准数据集中测试,获取了理想中心点和稠密区域,并且在较少的迭代次数内收敛到最优解或近似最优解。 展开更多
关键词 k-medoids聚类算法 稠密区域 初始中心 中心搜索更新
下载PDF
基于云计算的ACO-K中心点资源优化算法 被引量:2
5
作者 孟颖 罗可 +1 位作者 刘建华 姚丽娟 《计算机工程与应用》 CSCD 2013年第5期103-107,219,共6页
云计算是计算网络模型研究的热点领域,能实现几种资源共享和资源动态配置。然而,云计算中存储资源如何快速路由,减少动态负荷,兼顾全局负载平衡是有待解决的问题。ACO是一种仿生优化算法,具有健壮性强、智能搜索、全局优化、易与其他算... 云计算是计算网络模型研究的热点领域,能实现几种资源共享和资源动态配置。然而,云计算中存储资源如何快速路由,减少动态负荷,兼顾全局负载平衡是有待解决的问题。ACO是一种仿生优化算法,具有健壮性强、智能搜索、全局优化、易与其他算法结合等优点。K中心点算法是K均值的改进算法,鲁棒性强,不易受极端数据的影响。结合这两种算法的优点,提出一种基于云计算环境下的ACO-K中心点资源分配优化算法,得到最优的计算资源,提高云计算的效率。通过仿真验证了该算法的有效性。 展开更多
关键词 云计算 资源分配 k中心算法 蚁群算法(ACO) 动态负荷
下载PDF
基于K中心点的文档聚类算法 被引量:4
6
作者 吴景岚 朱文兴 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期88-91,共4页
K中心点算法是一个常用的聚类算法,它的主要缺陷是容易陷入局部极值,计算代价太高.本文先构造一个运用余弦相似度的K中心点文档聚类算法,然后提出一个改进算法,该算法不增加计算的复杂性,显著改进文档的聚类结果.最后,将该改进算法作为... K中心点算法是一个常用的聚类算法,它的主要缺陷是容易陷入局部极值,计算代价太高.本文先构造一个运用余弦相似度的K中心点文档聚类算法,然后提出一个改进算法,该算法不增加计算的复杂性,显著改进文档的聚类结果.最后,将该改进算法作为局部搜索过程嵌入到迭代局部搜索结构中,构造一个基于K中心点的迭代局部搜索文档聚类算法,进一步改进了文档聚类结果.试验结果表明该算法显著改进了文档聚类结果. 展开更多
关键词 k中心算法 文档聚类 迭代局部搜索
下载PDF
基于k中心点算法的TOPO服务器算法的研究 被引量:1
7
作者 王美 李晓峰 +1 位作者 孟令军 张立军 《计算机技术与发展》 2014年第4期122-125,130,共5页
在一个城域网中,数字电视机顶盒在对节目进行下载的时候,拥有这个节目资源的机顶盒的数量也许有很多个,怎么才能找到最近的一个机顶盒进行节目的下载是网络负载均衡中比较重要的问题,也是文中的研究目的。文中需要建立一个网络拓扑结构... 在一个城域网中,数字电视机顶盒在对节目进行下载的时候,拥有这个节目资源的机顶盒的数量也许有很多个,怎么才能找到最近的一个机顶盒进行节目的下载是网络负载均衡中比较重要的问题,也是文中的研究目的。文中需要建立一个网络拓扑结构,给对应的机顶盒分配相应的IP地址,将这些已知的信息存放到数据库中,使用VS2010软件进行编程,在具体实现过程中运用到了数据挖掘中的k中心点算法,最终找到距离最近的机顶盒的地址下载目标资源。 展开更多
关键词 网络负载均衡 数据库 VS2010 k中心算法
下载PDF
基于初始中心点K均值聚类算法的改进方法研究 被引量:2
8
作者 卜天然 《通化师范学院学报》 2017年第2期60-63,共4页
传统聚类算法随机选取初始中心不能有效处理不规则数据集的边缘数据.该文主要叙述了K均值聚类算法基本思想和流程,详细分析了其算法的优点及存在的问题,提出对现有基于初始中心点K均值聚类算法的改进方法.
关键词 初始中心 k均值聚类算法 改进方法
下载PDF
一种基于K中心点算法的测试用例集约简方法 被引量:3
9
作者 陈阳梅 丁晓明 《计算机科学》 CSCD 北大核心 2012年第B06期422-424,共3页
测试用例集约简的目的是用尽可能少的测试用例充分测试给定的测试目标。引入聚类分析中K中心点(K-medoids)算法的思想将每一个测试用例作为一个结点并寻找其相似性,将得到的聚类分析结果再根据测试需求从各簇中选择测试用例,从而得到约... 测试用例集约简的目的是用尽可能少的测试用例充分测试给定的测试目标。引入聚类分析中K中心点(K-medoids)算法的思想将每一个测试用例作为一个结点并寻找其相似性,将得到的聚类分析结果再根据测试需求从各簇中选择测试用例,从而得到约简的测试用例集。仿真实验的结果证明了该方法的可行性和有效性。 展开更多
关键词 测试用例集约简 聚类分析 k中心算法 错误检测率
下载PDF
一种基于标准差的K-medoids聚类算法 被引量:4
10
作者 邓玉芳 张继福 《计算机技术与发展》 2020年第8期53-60,共8页
K-medoids聚类分析具有对孤立点敏感度较低和良好的鲁棒性等特点,但由于初始聚类中心的选取和中心点迭代更新等,聚类精度和效率较低。文中根据标准差体现数据离散程度,定义了初始中心点候选集,给出了一种基于标准差的K-medoids聚类算法... K-medoids聚类分析具有对孤立点敏感度较低和良好的鲁棒性等特点,但由于初始聚类中心的选取和中心点迭代更新等,聚类精度和效率较低。文中根据标准差体现数据离散程度,定义了初始中心点候选集,给出了一种基于标准差的K-medoids聚类算法。该算法首先利用标准差定义了初始中心点候选集,并采用逐步增加的方式确定初始中心点,从而保证了选取密集程度较大的样本点作初始聚类中心点,同时避免选取到密集程度较低的样本点尤其是孤立点作为初始中心点;其次,按照数据样本归属于最近的中心点的原则,形成初始聚类簇,不断更新聚类中心点,直到聚类误差平方和相同为止,形成聚类簇;最后,在UCI数据集和人工数据集上的实验验证了该聚类算法具有良好的聚类精度、效率和鲁棒性。 展开更多
关键词 k-medoids聚类算法 初始中心 标准差 UCI数据集
下载PDF
基于快速K-medoids聚类的WLAN室内定位算法 被引量:3
11
作者 陶峥 宋强 金许烨 《电子设计工程》 2017年第6期109-113,共5页
在WLAN位置指纹定位技术中,K-means聚类算法一直被用于离线训练阶段的参考点聚类,文中针对该法对噪声数据和孤立点数据非常敏感等缺点,采用快速K-medoids聚类算法来对定位区域内的参考点进行聚类。快速K-medoids参考点聚类算法先选取初... 在WLAN位置指纹定位技术中,K-means聚类算法一直被用于离线训练阶段的参考点聚类,文中针对该法对噪声数据和孤立点数据非常敏感等缺点,采用快速K-medoids聚类算法来对定位区域内的参考点进行聚类。快速K-medoids参考点聚类算法先选取初始类中心参考点,再通过迭代方式在每一类中选取与其他位置指纹信息距离之和最小的那条位置指纹信息对应的参考点作为类中心参考点。最后通过实验数据分析表明,相比K-means参考点聚类算法,从平均误差、标准差和累积误差曲线图3个方面可以看出快速K-medoids参考点聚类算法在去除噪声数据和孤立点数据上具有更好的鲁棒性,可有效地提升定位精度。 展开更多
关键词 室内定位 无线局域网 位置指纹 聚类算法 快速k中心
下载PDF
优化的初始中心点选取的K-means聚类算法 被引量:1
12
作者 王金金 王未央 《现代计算机(中旬刊)》 2015年第7期6-9,共4页
介绍一种可以对初始聚类中心进行优化的算法,改进之处是对孤立点进行特殊处理,降低孤立点敏感的问题,把距离与密度结合,选取最优的初始中心点,从而使聚类的精确度得到提高,并且该算法通过在计算的过程中存储数据对象之间的距离来提高算... 介绍一种可以对初始聚类中心进行优化的算法,改进之处是对孤立点进行特殊处理,降低孤立点敏感的问题,把距离与密度结合,选取最优的初始中心点,从而使聚类的精确度得到提高,并且该算法通过在计算的过程中存储数据对象之间的距离来提高算法的效率。通过对实验结果的分析,得到改进后的聚类算法可以有更好的精确度和更高的算法效率。 展开更多
关键词 k—means算法 聚类中心 孤立
下载PDF
基于k-medoids聚类算法的低压台区线损异常识别方法 被引量:7
13
作者 薛明志 陈商玥 高强 《天津理工大学学报》 2021年第1期26-31,共6页
针对低压台区线损异常情况的判断问题,以电力公司用电信息采集系统采集的日线损率数据为基础,提出了一种基于k-medoids聚类算法的低压台区线损异常识别方法,并以某地区819个台区为例进行算法可靠性的验证.首先应用局部异常因子LOF算法... 针对低压台区线损异常情况的判断问题,以电力公司用电信息采集系统采集的日线损率数据为基础,提出了一种基于k-medoids聚类算法的低压台区线损异常识别方法,并以某地区819个台区为例进行算法可靠性的验证.首先应用局部异常因子LOF算法对低压台区异常日线损率数据进行判断、筛选和剔除;其次应用k-medoids聚类算法对日线损率数据进行聚类分析,得到低压台区日线损率数据的聚类中心点和欧氏距离,从而实现低压台区线损异常情况的判断;最后通过819个低压台区的实际数据验证算法的合理性.结果表明,算法能够对低压台区线损的异常情况做出准确的判断. 展开更多
关键词 低压台区 k-medoids聚类算法 局部异常因子LOF算法 日线损率 聚类中心 欧氏距离
下载PDF
改进K中心点算法在入侵检测的应用
14
作者 魏明军 田昆 《河北能源职业技术学院学报》 2017年第4期57-59,共3页
传统K中心点算法虽然改进了K均值算法对噪声和孤立点数据敏感的不足,但是仍存在着初始聚类中心和聚类个数k难以确定的问题,因此,针对算法存在的问题,提出一种基于密度的改进K中心点算法。该算法会根据数据集数据的分布情况自主确定聚类... 传统K中心点算法虽然改进了K均值算法对噪声和孤立点数据敏感的不足,但是仍存在着初始聚类中心和聚类个数k难以确定的问题,因此,针对算法存在的问题,提出一种基于密度的改进K中心点算法。该算法会根据数据集数据的分布情况自主确定聚类个数k和k个聚类中心点。最后,通过在入侵检测领域KDD Cup99数据集上实验测试表明,改进K中心点算法不仅能够自动形成k个聚类,而且具有较高的入侵检测率和较低的漏报率,聚类和入侵检测的效果均优于传统的K中心点算法。 展开更多
关键词 入侵检测 k中心算法 改进k中心算法 聚类分析
下载PDF
改进SOM和快速K中心点银行客户细分
15
作者 吴虹颖 郑山红 苏珂 《长春工业大学学报》 CAS 2021年第3期279-284,共6页
动态设置自组织神经网络的学习速率,加快自我组织进程,利用改进后的SOM训练样本数据得到的原型向量数据量远小于初始数据量且保持原拓扑结构不变,再用快速K中心点算法对该原型向量聚类并用CH指标判定最佳聚类个数。结合巴雷托分析法和... 动态设置自组织神经网络的学习速率,加快自我组织进程,利用改进后的SOM训练样本数据得到的原型向量数据量远小于初始数据量且保持原拓扑结构不变,再用快速K中心点算法对该原型向量聚类并用CH指标判定最佳聚类个数。结合巴雷托分析法和客户价值矩阵将Standard银行客户划分为四类,为不同客户群体提供针对性营销建议。 展开更多
关键词 银行客户细分 SOM算法 快速k中心算法 聚类分析
下载PDF
K-Means算法的研究与改进 被引量:19
16
作者 周爱武 陈宝楼 王琰 《计算机技术与发展》 2012年第10期101-104,共4页
K-Means算法是一种基于划分方法的经典聚类算法,已经在很多领域得到广泛的应用。虽然该算法有很多优点,但其也存在自身的局限性,比如需要用户输入聚类簇个数,初始聚类中心是随机性选择的,算法容易陷入局部最优解,对孤立点比较敏感等。... K-Means算法是一种基于划分方法的经典聚类算法,已经在很多领域得到广泛的应用。虽然该算法有很多优点,但其也存在自身的局限性,比如需要用户输入聚类簇个数,初始聚类中心是随机性选择的,算法容易陷入局部最优解,对孤立点比较敏感等。文中首先应用统计学中的标准分数对样本进行孤立点分析,然后提出一种新的初始聚类中心确定策略。对改进的算法和原算法分别做实验进行比较,实验结果表明,改进的算法在准确率、收敛速度和稳定性方面都有很大的提高。 展开更多
关键词 k—Means算法 孤立 初始聚类中心
下载PDF
结合mean-shift与MST的K-means聚类算法 被引量:5
17
作者 徐沁 罗斌 《计算机工程》 CAS CSCD 2013年第12期204-210,共7页
针对初始点选择不当导致K-means陷入局部最小值问题,提出一种结合自适应mean-shift与最小生成树(MST)的K-means聚类算法。将数据对象投影到主成分分析(PCA)子空间,给出自适应mean-shift算法,并在PCA子空间内将数据向密度大的区域聚集,... 针对初始点选择不当导致K-means陷入局部最小值问题,提出一种结合自适应mean-shift与最小生成树(MST)的K-means聚类算法。将数据对象投影到主成分分析(PCA)子空间,给出自适应mean-shift算法,并在PCA子空间内将数据向密度大的区域聚集,再利用MST与图连通分量算法,找出数据的类别数和类标签,据此计算原始空间的密度峰值,并将其作为K-means聚类的初始中心点。对K-means的目标函数、聚类精度和运行时间进行比较,结果表明,该算法在较短的运行时间内能给出较优的全局解。 展开更多
关键词 聚类分析 k—means算法 初始中心 Mean—Shift算法 主成分分析 最小生成树
下载PDF
基于划分的数据挖掘K-means聚类算法分析 被引量:19
18
作者 曾俊 《现代电子技术》 北大核心 2020年第3期14-17,共4页
为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成... 为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成正比,通过密度参数优化k个样本数据的聚类中心点选取;依据欧几里得距离公式对未选取的其他数据到各个聚类中心之间的距离进行计算,同时以此距离为判别标准,对各个数据进行种类划分,从而得到初始的聚类分布;初始聚类分布得到之后,对每一个分布簇进行再一次的中心点计算,并判断与之前所取中心点是否相同,直到其聚类收敛达到最优效果。最后通过葡萄酒数据集对改进算法进行验证分析,改进算法比传统K⁃means算法的聚类效果更优,能够更好地在数据挖掘当中进行聚类。 展开更多
关键词 数据挖掘 聚类分析 k⁃means聚类算法 聚类中心选取 k⁃means算法改进 初始中心
下载PDF
基于参数优化VMD和改进K聚类判据融合的配电网故障选线方法 被引量:5
19
作者 王建元 张宇辉 刘铖 《南方电网技术》 CSCD 北大核心 2023年第7期135-145,共11页
针对现有暂态量选线方法易受到故障相角、过渡电阻、噪声、谐波及判据阈值的影响,提出基于参数优化变分模态分解(variational mode decomposition,VMD)和改进K聚类判据融合的选线方法。首先对分解过程的3个关键性参数进行动态优化,利用... 针对现有暂态量选线方法易受到故障相角、过渡电阻、噪声、谐波及判据阈值的影响,提出基于参数优化变分模态分解(variational mode decomposition,VMD)和改进K聚类判据融合的选线方法。首先对分解过程的3个关键性参数进行动态优化,利用信号频谱及分量特性确定VMD分解层数,并以算术优化算法求取最佳惩罚因子,剔除了工频、噪声及谐波干扰,再根据分解层数与各模态频谱确定模态中心频率以提高分解效率。其次,以优化后的VMD获取余弦相似度、高频幅值和直流能量作为互补的故障选线判据值。最后以改进K聚类算法实现多判据融合,弥补了单一判据的局限性。理论分析、仿真与实测结果表明,所提方法适用于分布式电源接入的电网,不受故障位置、故障相角及过渡电阻的影响,具有优异的抗谐波与噪声干扰性能。 展开更多
关键词 故障选线 变分模态分解 算术优化算法 k中心聚类 抗噪性
下载PDF
一种基于密度的K-means算法 被引量:3
20
作者 乔小妮 张明新 史变霞 《电脑开发与应用》 2008年第10期9-11,共3页
基于密度聚类的思想,提出了一种改进的K-means算法。算法吸取密度聚类算法的优点,利用对象的t-邻域密度作为选择初始聚类中心点的条件,选出较优的初始中心点,从而得到较好的聚类效果。通过实验表明,此方法相对于随机选取初始聚类中心点... 基于密度聚类的思想,提出了一种改进的K-means算法。算法吸取密度聚类算法的优点,利用对象的t-邻域密度作为选择初始聚类中心点的条件,选出较优的初始中心点,从而得到较好的聚类效果。通过实验表明,此方法相对于随机选取初始聚类中心点准确率较高、稳定性强、可伸缩性好。 展开更多
关键词 k—means算法 t-邻域密度 初始聚类中心
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部