期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
K值核算法在铸造企业生产管理中的应用
1
作者 刘天平 王爱丽 《现代铸铁》 CAS 2018年第2期79-81,共3页
介绍了K值核算法的概念,以某铸造公司月产500 t球墨铸铁件为例,单个铸件质量36 kg,工艺出品率70%,实际废品率9.1%左右,熔损5%,其它损耗2%,分别对熔炼K值、回炉料K值、物料K值进行了计算,列出了金属炉料构成表,指出:K值核算法对企业的销... 介绍了K值核算法的概念,以某铸造公司月产500 t球墨铸铁件为例,单个铸件质量36 kg,工艺出品率70%,实际废品率9.1%左右,熔损5%,其它损耗2%,分别对熔炼K值、回炉料K值、物料K值进行了计算,列出了金属炉料构成表,指出:K值核算法对企业的销售报价、生产管理、供应与财务管理乃至经营管理,具有现实的指导意义。在推广应用中,生产与管理的很多问题得到了解决,并取得了可观的经济效益和显著的社会效益,加快了铸造企业由传统的经验管理模式向精细化生产经营管理模式转变的步伐。 展开更多
关键词 k值核算法 铸造 成本
下载PDF
Short-term photovoltaic power prediction using combined K-SVD-OMP and KELM method 被引量:2
2
作者 LI Jun ZHENG Danyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期320-328,共9页
For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the i... For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy. 展开更多
关键词 photovoltaic power prediction sparse representation k-mean singular value decomposition algorithm(k-SVD) kernel extreme learning machine(kELM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部