期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
融合K值算法与三指标的神经科学领域“睡美人”论文识别及影响因素探析 被引量:3
1
作者 胡泽文 任萍 沈佳慧 《现代情报》 CSSCI 2022年第3期147-156,共10页
[目的/意义]从不同学科领域识别出"睡美人"论文并在科学界中广泛传播与使用,能够极大程度实现此类科技成果的科学价值,促进科学领域的发展与进步。[方法/过程]综合运用K值算法、三指标法和文献被引延迟指数,从神经科学领域199... [目的/意义]从不同学科领域识别出"睡美人"论文并在科学界中广泛传播与使用,能够极大程度实现此类科技成果的科学价值,促进科学领域的发展与进步。[方法/过程]综合运用K值算法、三指标法和文献被引延迟指数,从神经科学领域1990-2010年发表的905 418篇论文中识别出"睡美人"论文,并对"睡美人"论文的期刊分布、论文篇幅、作者数量和睡眠特征等影响因素进行计量分析。[结果/结论]实证结果显示:(1)融合K值算法与三指标法能够从神经科学领域90余万篇论文中识别出26篇"睡美人"论文,识别准确率较高;(2)文献被引延迟指数方法识别出的"睡美人"论文数量较多,达到65篇,识别准确率略低,然而该方法的计算效率较高;(3)两类方法识别出的26篇共同"睡美人"论文的睡眠深度范围为0.11~1.63次,睡眠时长相对较短,平均时长为9.88年。此外,除总被引频次外,神经科学领域"睡美人"论文形成的影响因素与期刊影响因子、论文作者数量和篇幅等特征均不显著相关。 展开更多
关键词 “睡美人”论文 神经科学 k值算法 三指标法 被引延迟指数 计量特征 影响因素
下载PDF
基于K值算法的在线谣言抑制分析 被引量:1
2
作者 张栋 刘云华 郑迪升 《信息通信》 2019年第12期27-29,共3页
社交平台上由于有沉淀大量用户数据,从而可以用于人格预测以及谣言抑制的相关内容,虽然其属于社会计算领域。但在未来的社会发展过程中,谣言抑制算法在进行更多次迭代之后会能有更好的发展,同时也更有利于业务应用。在未来,单一的谣言... 社交平台上由于有沉淀大量用户数据,从而可以用于人格预测以及谣言抑制的相关内容,虽然其属于社会计算领域。但在未来的社会发展过程中,谣言抑制算法在进行更多次迭代之后会能有更好的发展,同时也更有利于业务应用。在未来,单一的谣言事后补救措施会逐渐过渡到事前预防以及关键话题人的引导上来,算法与业务的不断结合,必将大大提高谣言控制的效率。从另一个角度来说,用户的相关记录也将沉淀为历史数据,用于用户分析,同时为用户人格预测打下良好基础。两者相结合,将会有效遏制谣言传播,在未来将会有更好的发展前景。 展开更多
关键词 神经网络 人格分析 社交属性 k值算法 神经网络模型
下载PDF
基于K值算法的图书情报领域“睡美人”文献识别 被引量:15
3
作者 李秀霞 邵作运 刘超 《图书情报工作》 CSSCI 北大核心 2017年第21期114-122,共9页
[目的 /意义]鉴于国内对"睡美人"文献研究的不足,介绍一种新的识别"睡美人"文献的方法——K值算法,并利用该算法识别图书情报学(Information Science&Library Science,ISLS)领域的"睡美人"文献。研... [目的 /意义]鉴于国内对"睡美人"文献研究的不足,介绍一种新的识别"睡美人"文献的方法——K值算法,并利用该算法识别图书情报学(Information Science&Library Science,ISLS)领域的"睡美人"文献。研究对发现ISLS领域科技成果的发明人和倡导者、保护并促进重大科学发现的推广应用等均具有重要意义。[方法/过程]以Web of Science数据库中1988-2007年ISLS领域的3460篇文献为例,构成识别"睡美人"文献的数据集,利用K值算法识别其中的"睡美人"文献,总结ISLS领域"睡美人"文献的特征,并分析其唤醒机制。[结果/结论]结果表明,K值算法能够较好地识别ISLS领域的"睡美人"文献,用该算法从ISLS领域文献中共识别出6篇"睡美人"文献,这些文献的沉睡时长从7-14年不等,其研究内容主要是新方法、新系统在医学上的应用。唤醒上述"睡美人"文献的动因包括:理论和技术的后续发展、系统的商业化、作者后来赢得的声誉、知名学者的引用等。 展开更多
关键词 “睡美人”文献 文献识别 k值算法 引文曲线 唤醒机制
原文传递
一种ALMAE-SWSupAE裂纹声发射信号识别算法研究
4
作者 沈鹏 张润锋 +1 位作者 赵永峰 陈江义 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第7期204-210,共7页
针对裂纹声发射信号的识别问题,基于大边缘自编码器(LMAE)和堆叠融合监督自编码器(SFSupAE)设计了自适应大边缘堆叠权重监督自编码(ALMAE-SWSupAE)算法。针对LMAE中的固定k值问题,引入自适应k值算法,修改h(s)运算方法解决数据溢出问题;... 针对裂纹声发射信号的识别问题,基于大边缘自编码器(LMAE)和堆叠融合监督自编码器(SFSupAE)设计了自适应大边缘堆叠权重监督自编码(ALMAE-SWSupAE)算法。针对LMAE中的固定k值问题,引入自适应k值算法,修改h(s)运算方法解决数据溢出问题;在SFSupAE中引入子分类器的性能权重优化分配策略,并设计新的权重函数;使用铝合金试件进行拉伸裂纹实验,识别采集到的声发射信号。研究结果表明:所提出的ALMAE-SWSupAE算法法识别准确率达到98.89%,相较于SSAE、SDAE、CAE、StAE和SAE方法性能具有明显提升,并在消融实验中证明了其改进有效性。 展开更多
关键词 裂纹声发射信号 信号识别 ALMAE-SWSupAE 自适应k值算法 权重分配策略
下载PDF
用K值试算法分析“筏板+桩基”内力简介
5
作者 陈万里 邵兵 《上海冶金设计》 1993年第2期44-48,共5页
关键词 筏板 桩基 k算法
下载PDF
一种改进的K值最近邻自动分类方法
6
作者 李伟 《计算机光盘软件与应用》 2014年第1期87-88,共2页
K值最近邻法是常用的一种自动分类算法。当待分类文本与样本集中多个决策样本的距离相等的时候,固定的K值取法不能充分利用样本集,给分类结果带来一定的随机性,影响了自动分类的准确性。本文通过对K值最近邻算法的原理进行深入分析,提... K值最近邻法是常用的一种自动分类算法。当待分类文本与样本集中多个决策样本的距离相等的时候,固定的K值取法不能充分利用样本集,给分类结果带来一定的随机性,影响了自动分类的准确性。本文通过对K值最近邻算法的原理进行深入分析,提出了一种K值动态选取的方案,使得K值最近邻算法的分类准确性有了显著的提高。 展开更多
关键词 k最近邻算法 自动分类 决策样本选取 kNN
下载PDF
基于“睡美人”文献识别的高校学术论文价值挖掘方法研究——以东北大学为例 被引量:1
7
作者 邹明慧 《情报探索》 2021年第3期33-41,共9页
[目的/意义]研究“睡美人”文献的识别方法,对尽早发现重要科技成就及其发明人、加快科技成果转化以及完善学术评价方法等均具有重要意义。[方法/过程]针对高校学术论文成果评价这一特定场景,提出“先客观指标粗筛、后多维参数细选”的... [目的/意义]研究“睡美人”文献的识别方法,对尽早发现重要科技成就及其发明人、加快科技成果转化以及完善学术评价方法等均具有重要意义。[方法/过程]针对高校学术论文成果评价这一特定场景,提出“先客观指标粗筛、后多维参数细选”的研究思路,组合使用K值算法和三指标法,对东北大学发表于Web of Science核心合集的论文样本集进行了“睡美人”文献挖掘的实证研究。[结果/结论]该方法共识别出12篇“睡美人”文献,并对其被引特征、期刊特征、睡眠特征、内容特征等因素进行了分析。实获数据处理结果表明了该方法的有效性,相关研究方法和结果可对东北大学学术论文评价提供重要参考。 展开更多
关键词 “睡美人”文献 k值算法 三指标识别 学术论文 挖掘
下载PDF
一种视频图像的去雾算法 被引量:1
8
作者 吴绍启 唐宁 +1 位作者 张子方 赵鹏 《桂林电子科技大学学报》 2016年第5期364-368,共5页
针对去雾方法存在运算复杂度高、图像边沿细节模糊等缺点,提出一种基于K值邻域均值滤波的去雾算法。利用K值邻域均值滤波算法对大气透射图进行估计,通过大气散射物理模型进行去雾处理,最后通过乘法运算实现图像的亮度调整。实验结果表... 针对去雾方法存在运算复杂度高、图像边沿细节模糊等缺点,提出一种基于K值邻域均值滤波的去雾算法。利用K值邻域均值滤波算法对大气透射图进行估计,通过大气散射物理模型进行去雾处理,最后通过乘法运算实现图像的亮度调整。实验结果表明,K值邻域均值滤波算法具有更快的处理速度,满足视频图像去雾处理系统的实时性要求,且解决了图像去雾后边沿模糊的问题,去雾效果更好。 展开更多
关键词 视频图像去雾 k邻域均滤波算法 大气散射物理模型
下载PDF
Short-term photovoltaic power prediction using combined K-SVD-OMP and KELM method 被引量:2
9
作者 LI Jun ZHENG Danyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期320-328,共9页
For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the i... For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy. 展开更多
关键词 photovoltaic power prediction sparse representation k-mean singular value decomposition algorithm(k-SVD) kernel extreme learning machine(kELM)
下载PDF
A multi-view K-multiple-means clustering method
10
作者 ZHANG Nini GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期405-411,共7页
The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be ... The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results. 展开更多
关键词 k-multiple-means(kMM)clustering weight parameters multi-view k-multiple-means(MkMM)method
下载PDF
Two-Stage Resource Allocation Scheme for Three-Tier Ultra-Dense Network 被引量:5
11
作者 Junwei Huang Pengguang Zhou +2 位作者 Kai Luo Zhiming Yang Gongcheng He 《China Communications》 SCIE CSCD 2017年第10期118-129,共12页
In 5 G Ultra-dense Network(UDN), resource allocation is an efficient method to manage inter-small-cell interference. In this paper, a two-stage resource allocation scheme is proposed to supervise interference and reso... In 5 G Ultra-dense Network(UDN), resource allocation is an efficient method to manage inter-small-cell interference. In this paper, a two-stage resource allocation scheme is proposed to supervise interference and resource allocation while establishing a realistic scenario of three-tier heterogeneous network architecture. The scheme consists of two stages: in stage I, a two-level sub-channel allocation algorithm and a power control method based on the logarithmic function are applied to allocate resource for Macrocell and Picocells, guaranteeing the minimum system capacity by considering the power limitation and interference coordination; in stage II, an interference management approach based on K-means clustering is introduced to divide Femtocells into different clusters. Then, a prior sub-channel allocation algorithm is employed for Femtocells in diverse clusters to mitigate the interference and promote system performance. Simulation results show that the proposed scheme contributes to the enhancement of system throughput and spectrum efficiency while ensuring the system energy efficiency. 展开更多
关键词 ultra-dense network resource allocation logarithmic function k-means
下载PDF
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
12
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis k-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
下载PDF
基于深度学习的无人机航拍绝缘子异常检测 被引量:2
13
作者 林华燕 夏松召 +1 位作者 袁立天 杨静 《北京测绘》 2023年第4期497-501,共5页
针对电力巡线无人机检测绝缘子缺陷,具有缺陷绝缘子样本数据不均衡、采集难度大等问题,提出一种基于YOLOV5(you only look once V5)算法的绝缘子异常检测模型。首先借助YOLOV5目标检测算法定位绝缘子位置,再把绝缘子图像输入到残差网络... 针对电力巡线无人机检测绝缘子缺陷,具有缺陷绝缘子样本数据不均衡、采集难度大等问题,提出一种基于YOLOV5(you only look once V5)算法的绝缘子异常检测模型。首先借助YOLOV5目标检测算法定位绝缘子位置,再把绝缘子图像输入到残差网络提取多层金字塔特征,然后通过K邻近值算法判断特征层像素是否为离群点,由此可判断绝缘子是否存在缺陷。所提方法无须负样本绝缘子图像,仅通过正样本即可训练网络;与常用方法相比,所提算法的准确率和召回率均为最高,表明所提方法泛化性和稳定性较好。 展开更多
关键词 绝缘子异常检测 YOLOV5模型 残差网络 k邻近算法
下载PDF
基于字典学习的雷达高分辨距离像目标识别 被引量:8
14
作者 冯博 杜兰 +1 位作者 张学峰 刘宏伟 《电波科学学报》 EI CSCD 北大核心 2012年第5期897-905,共9页
提出一种基于字典学习的雷达高分辨距离像(HRRP)目标识别算法。该算法依据对测试样本的信噪比估计,可以自适应地确定测试阶段稀疏分解的稀疏度系数。相比于传统识别算法,文中算法对目标的识别性能更好,且对噪声的鲁棒性更强。另外,文中... 提出一种基于字典学习的雷达高分辨距离像(HRRP)目标识别算法。该算法依据对测试样本的信噪比估计,可以自适应地确定测试阶段稀疏分解的稀疏度系数。相比于传统识别算法,文中算法对目标的识别性能更好,且对噪声的鲁棒性更强。另外,文中算法可以在只训练部分角域数据(不完备训练集)的条件下较好地识别全角域数据,可应用于HRRP数据库的扩展。基于实测数据的识别试验验证了该算法的有效性。 展开更多
关键词 雷达自动目标识别 高分辨距离像 稀疏表示 字典学习 k次奇异分解算法
下载PDF
Matrix dimensionality reduction for mining typical user profiles 被引量:2
15
作者 陆建江 徐宝文 +1 位作者 黄刚石 张亚非 《Journal of Southeast University(English Edition)》 EI CAS 2003年第3期231-235,共5页
Recently clustering techniques have been used to automatically discover typical user profiles. In general, it is a challenging problem to design effective similarity measure between the session vectors which are usual... Recently clustering techniques have been used to automatically discover typical user profiles. In general, it is a challenging problem to design effective similarity measure between the session vectors which are usually high-dimensional and sparse. Two approaches for mining typical user profiles, based on matrix dimensionality reduction, are presented. In these approaches, non-negative matrix factorization is applied to reduce dimensionality of the session-URL matrix, and the projecting vectors of the user-session vectors are clustered into typical user-session profiles using the spherical k -means algorithm. The results show that two algorithms are successful in mining many typical user profiles in the user sessions. 展开更多
关键词 Web usage mining non-negative matrix factorization spherical k-means algorithm
下载PDF
基于LTE-R信号强度特征的列车位置指纹定位技术研究 被引量:1
16
作者 罗淼 党建武 《兰州交通大学学报》 CAS 2021年第5期39-44,50,共7页
高速铁路隧道环境中采用LTE-R(long term evolution-railway)无线通信位置指纹定位解算时,针对加权K值邻近位置指纹解算精度低的问题,利用混沌粒子群算法优化权值的良好性能,提出基于混沌粒子群优化的加权K值邻近算法对列车位置指纹定... 高速铁路隧道环境中采用LTE-R(long term evolution-railway)无线通信位置指纹定位解算时,针对加权K值邻近位置指纹解算精度低的问题,利用混沌粒子群算法优化权值的良好性能,提出基于混沌粒子群优化的加权K值邻近算法对列车位置指纹定位在线阶段进行指纹匹配解算,分别讨论了指纹间距取25 m、50 m、100 m时混沌粒子群优化加权K值邻近算法的收敛性和精确性.仿真结果表明:经混沌粒子群优化的加权K值邻近算法收敛速度更快,定位解算结果精度更高;在提高列车位置指纹定位精度方面,比单纯的加权K值邻近算法以及经粒子群优化的加权K值邻近算法更具优越性,当指纹间距取25 m时,列车定位误差小于25 m的概率高达96%,使隧道环境中列车位置指纹定位精度得到有效改善. 展开更多
关键词 LTE-R 位置指纹定位 混沌粒子群 加权k邻近算法
下载PDF
基于AS7263多通道光谱模块对草坪地物的分类与识别
17
作者 郭鸿儒 马燕 蒲克俊 《甘肃科技纵横》 2021年第10期16-18,共3页
本论述利用多通道光谱模块AS7263,收集与草坪相关地物的漫反射光谱数据,经归一化处理,通过对训练数据进行主成分分析和聚类分析,将数据分为四类,然后利用KNN算法对测试数据进行识别与分类。其中对植物、土壤、红地砖和混凝土类的数据识... 本论述利用多通道光谱模块AS7263,收集与草坪相关地物的漫反射光谱数据,经归一化处理,通过对训练数据进行主成分分析和聚类分析,将数据分为四类,然后利用KNN算法对测试数据进行识别与分类。其中对植物、土壤、红地砖和混凝土类的数据识别正确率分别为95.12%、87.05%、76.92%和90.67%。结果表明:多通道漫反射光谱结合KNN算法,对植物和地物的识别区分是可行的。 展开更多
关键词 多通道光谱 漫反射 k近邻算法(kNN) 识别
下载PDF
Research on natural language recognition algorithm based on sample entropy
18
作者 Juan Lai 《International Journal of Technology Management》 2013年第2期47-49,共3页
Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly ... Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly extract the sample entropy of mixed signal, mean and variance to calculate each signal sample entropy, finally uses the K mean clustering to recognize. The simulation results show that: the recognition rate can be increased to 89.2% based on sample entropy. 展开更多
关键词 sample entropy voice activity detection speech processing
下载PDF
Impulsive component extraction using shift-invariant dictionary learning and its application to gear-box bearing early fault diagnosis 被引量:3
19
作者 ZHANG Zhao-heng DING Jian-ming +1 位作者 WU Chao LIN Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期824-838,共15页
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ... The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing. 展开更多
关键词 gear-box bearing fault diagnosis shift-invariant k-means singular value decomposition impulsive component extraction
下载PDF
Integrating OWA and Data Mining for Analyzing Customers Churn in E-Commerce 被引量:1
20
作者 CAO Jie YU Xiaobing ZHANG Zhifei 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第2期381-392,共12页
Customers are of great importance to E-commerce in intense competition.It is known that twenty percent customers produce eighty percent profiles.Thus,how to find these customers is very critical.Customer lifetime valu... Customers are of great importance to E-commerce in intense competition.It is known that twenty percent customers produce eighty percent profiles.Thus,how to find these customers is very critical.Customer lifetime value(CLV) is presented to evaluate customers in terms of recency,frequency and monetary(RFM) variables.A novel model is proposed to analyze customers purchase data and RFM variables based on ordered weighting averaging(OWA) and K-Means cluster algorithm.OWA is employed to determine the weights of RFM variables in evaluating customer lifetime value or loyalty.K-Means algorithm is used to cluster customers according to RFM values.Churn customers could be found out by comparing RFM values of every cluster group with average RFM.Questionnaire is conducted to investigate which reasons cause customers dissatisfaction.Rank these reasons to help E-commerce improve services.The experimental results have demonstrated that the model is effective and reasonable. 展开更多
关键词 Customer life value E-COMMERCE k-MEANS OWA.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部