期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于农户意愿的农村宅基地集约面积估算——以渝东北11区县为例 被引量:8
1
作者 张怡然 邱道持 +2 位作者 李艳 骆东奇 石永明 《中国土地科学》 CSSCI 北大核心 2011年第1期50-56,共7页
研究目的:选取地处三峡库区腹地且生态环境脆弱的渝东北11区县为研究区域,从农户意愿角度揭示满足宅基地需求最大化时的人均宅基地集约用地面积,为农村宅基地集约利用乃至农村建设用地集约利用提供建议。研究方法:农户调查法,消费效用... 研究目的:选取地处三峡库区腹地且生态环境脆弱的渝东北11区县为研究区域,从农户意愿角度揭示满足宅基地需求最大化时的人均宅基地集约用地面积,为农村宅基地集约利用乃至农村建设用地集约利用提供建议。研究方法:农户调查法,消费效用函数计算,K值聚类分析法。研究结果:农户宅基地用地需求与农户建房支出水平、农村房屋建造单价、农户消费偏好、房屋需求强度等存在依赖关系;在满足宅基地需求最大化时的最佳户均宅基地面积为122.14—140.06m^2/户,最佳人均农村宅基地面积为31.32—35.91 m^2/人。研究结论:渝东北地区农村宅基地的集约利用潜力巨大,农村建设用地集约利用潜力挖掘具有极强可行性,应扎实推进宅基地内部挖潜,着力探索农村宅基地集约利用新机制。 展开更多
关键词 土地管理 农村宅基地 农户意愿 k值聚类分析 集约面积 渝东北
下载PDF
Speech detection method based on a multi-window analysis 被引量:1
2
作者 Luo Xinwei Liu Ting +4 位作者 Huang Ming Xu Xiaogang Cao Hongli Bai Xianghua Xu Dayong 《Journal of Southeast University(English Edition)》 EI CAS 2021年第4期343-349,共7页
Aiming at the poor performance of speech signal detection at low signal-to-noise ratio(SNR),a method is proposed to detect active speech frames based on multi-window time-frequency(T-F)diagrams.First,the T-F diagram o... Aiming at the poor performance of speech signal detection at low signal-to-noise ratio(SNR),a method is proposed to detect active speech frames based on multi-window time-frequency(T-F)diagrams.First,the T-F diagram of the signal is calculated based on a multi-window T-F analysis,and a speech test statistic is constructed based on the characteristic difference between the signal and background noise.Second,the dynamic double-threshold processing is used for preliminary detection,and then the global double-threshold value is obtained using K-means clustering.Finally,the detection results are obtained by sequential decision.The experimental results show that the overall performance of the method is better than that of traditional methods under various SNR conditions and background noises.This method also has the advantages of low complexity,strong robustness,and adaptability to multi-national languages. 展开更多
关键词 voice activity detection multi-window spectral analysis k-means clustering threshold adjustment sequential decision
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部