期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于单目相机与K均值聚类分割的船舶航行环境地图深度构建 被引量:2
1
作者 付洪宇 史国友 +2 位作者 冉洋 高邈 刘姿含 《上海海事大学学报》 北大核心 2022年第4期1-8,共8页
为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rot... 为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rotated BRIEF,ORB)来提高即时定位与地图构建(simultaneous localization and mapping,SLAM)效率,缩短特征点匹配时间,改善对外界环境的感知效果并提升船舶自身位姿估计精度。采用2020年南宁海事局执法船进港和靠泊期间由单目相机拍摄的视频数据进行实例验证。结果表明,提出的算法比传统SLAM算法的运行耗时更少,与传统定位设备输出轨迹的偏差较小,可为船舶全面立体感知海上航行环境提供研究基础。 展开更多
关键词 海上航行环境感知 k均值聚类分割 快速特征点提取和描述算法(ORB) 即时定位与地图构建(SLAM)
下载PDF
基于视觉注意机制的感兴趣区提取方法
2
作者 安福定 何东健 朱珊娜 《煤炭技术》 CAS 北大核心 2012年第1期177-179,共3页
以精确获取图像中对象感兴趣区域为目标,提出一种基于视觉注意机制和K均值聚类相结合的感兴趣区提取方法。图像经过视觉特征提取、高斯金字塔多尺度变换后,依据多特征图合并策略生成显著图。采用K均值聚类方法分割图像的候选区域,并结... 以精确获取图像中对象感兴趣区域为目标,提出一种基于视觉注意机制和K均值聚类相结合的感兴趣区提取方法。图像经过视觉特征提取、高斯金字塔多尺度变换后,依据多特征图合并策略生成显著图。采用K均值聚类方法分割图像的候选区域,并结合显著图提取图像感兴趣区。实验结果表明,运用该方法提取的感兴趣区更接近人类的视觉注意过程,并具有一定的抗噪能力。 展开更多
关键词 视觉注意机制 显著图 k均值聚类分割 感兴趣区
下载PDF
热带气旋客观定位的红外亮温方差方法 被引量:4
3
作者 张长江 薛利成 +1 位作者 马雷鸣 鲁小琴 《中国图象图形学报》 CSCD 北大核心 2018年第3期450-457,共8页
目的热带气旋(TC)是生成于热带或副热带洋面上的强烈天气系统。在TC的监测分析和预报工作中,准确地确定其中心实时地理位置至关重要。此外,TC的精确位置也是TC强度估计的重要参数。对此,提出一种利用偏差角方差定位TC中心的方法。方法首... 目的热带气旋(TC)是生成于热带或副热带洋面上的强烈天气系统。在TC的监测分析和预报工作中,准确地确定其中心实时地理位置至关重要。此外,TC的精确位置也是TC强度估计的重要参数。对此,提出一种利用偏差角方差定位TC中心的方法。方法首先,从红外卫星云图中截取热带气旋主体云系区域,并分别利用Bezier直方图和K均值聚类方法分割得到主体云系二值图像和红外亮温变化剧烈位置二值图像。其中,主体云系二值图像可将TC的主体云系从卫星红外云图中分割提取出来,用割提取出来的图像进行定位可以剔除掉外散环流的小云块对定位结果的影响;而红外亮温变化剧烈位置二值图像则可分别将TC中心密闭云区,螺旋云带和外散环流的边缘及梯度较大区域分割出来,这些区域是最后TC中心定位的主要依据。将上述两幅二值图像相与得到气旋主体云系红外亮温变化剧烈位置的二值图像,这一步剔除了TC的外散环流,而得到的二值图像便可分别将TC中心密闭云区和螺旋云带的边缘及梯度较大的区域分割出来。然后,对得到的气旋主体云系红外亮温变化剧烈位置二值图像进行Hough变换检测以减小气旋中心的搜索范围。最后,以检测区域内每个像素点为参考中心计算得到偏差角矩阵,并计算偏差角矩阵的方差填入对应检测区域内作为参考中心像素点的位置得到方差矩阵,将方差矩阵中值最小的位置作为气旋中心。因为TC除了少数特别强的时候大多数可以用圆形描述,而绝大多数时候TC要用螺旋线描述,但是具体是几度螺旋线来描述合适很难确定,本文用偏差角的方差就可以衡量这些云带、边缘的偏离状况是否集中,方差越小就表示偏离状况越集中。结果运用该方法对400幅无眼TC红外图像和197幅有眼TC红外图像进行中心定位,分别与中国气象局(CMA)、日本气象厅(JMA)和美国台风预警中心(JTWC)的主观定位结果进行比较并取平均偏差,本文方法对有眼TC定位平均偏差约为27 km,无眼TC平均偏差约为45 km。具体到分别与CMA、JMA和JTWC的比较,对于有眼TC定位偏差分别为26.82 km,26.05 km和27.84 km,无眼TC定位偏差为45.84 km,44.84 km和47.15 km。结论就结果而言,本文方法定位与CMA、JMA的偏差比较接近,与JTWC的偏差较大。就西北太平洋的TC而言,CMA和JMA的定位精度较高,JTWC精度稍低,这是与认知相符合,并且也证明了本文方法具有较高的可信度。此外,本文方法为TC定位提供了新的参考依据。 展开更多
关键词 偏差角方差 Bezier直方图分割 k均值聚类分割 HOUGH变换
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部