针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN...针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。展开更多
传统的机器视觉采用二维RGB图像,难以满足三维视觉检测的要求,深度图像能直接反映物体表面的三维特征,正逐渐受到重视。该文提出的方案将RGB和深度信息相结合,分割出物体所在区域,并利用梯度方向直方图(HOG,histograms of oriented grad...传统的机器视觉采用二维RGB图像,难以满足三维视觉检测的要求,深度图像能直接反映物体表面的三维特征,正逐渐受到重视。该文提出的方案将RGB和深度信息相结合,分割出物体所在区域,并利用梯度方向直方图(HOG,histograms of oriented gradients)分别提取RGB图像和深度图像特征信息。在分类算法上,该文采用k最邻近节点算法(k-NN)对特征进行筛选,识别出目标物体。试验结果表明,综合利用深度信息和RGB信息,识别准确率很高,此方案能够对物体和手势进行很好识别。展开更多
文摘针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。
文摘传统的机器视觉采用二维RGB图像,难以满足三维视觉检测的要求,深度图像能直接反映物体表面的三维特征,正逐渐受到重视。该文提出的方案将RGB和深度信息相结合,分割出物体所在区域,并利用梯度方向直方图(HOG,histograms of oriented gradients)分别提取RGB图像和深度图像特征信息。在分类算法上,该文采用k最邻近节点算法(k-NN)对特征进行筛选,识别出目标物体。试验结果表明,综合利用深度信息和RGB信息,识别准确率很高,此方案能够对物体和手势进行很好识别。