期刊文献+
共找到314篇文章
< 1 2 16 >
每页显示 20 50 100
一种有效的K-means聚类中心初始化方法 被引量:86
1
作者 熊忠阳 陈若田 张玉芳 《计算机应用研究》 CSCD 北大核心 2011年第11期4188-4190,共3页
传统K-means算法由于随机选取初始聚类中心,使得聚类结果波动性大;已有的最大最小距离法选取初始聚类中心过于稠密,容易造成聚类冲突现象。针对以上问题,对最大最小距离法进行了改进,提出了最大距离积法。该方法在基于密度概念的基础上... 传统K-means算法由于随机选取初始聚类中心,使得聚类结果波动性大;已有的最大最小距离法选取初始聚类中心过于稠密,容易造成聚类冲突现象。针对以上问题,对最大最小距离法进行了改进,提出了最大距离积法。该方法在基于密度概念的基础上,选取到所有已初始化聚类中心距离乘积最大的高密度点作为当前聚类中心。理论分析与对比实验结果表明,此方法相对于传统K-means算法和最大最小距离法有更快的收敛速度、更高的准确率和更强的稳定性。 展开更多
关键词 k-均值算法 基于密度 初始中心 最大最小距离 最大距离积
下载PDF
一种新的确定K-均值算法初始聚类中心的方法 被引量:9
2
作者 王汉芝 刘振全 《天津科技大学学报》 CAS 2005年第4期76-79,共4页
针对传统的K-均值算法聚类时初始聚类中心难以确定的缺点,利用超立方体技术, 并依据同类样本中多数样本具有类似的子向量的特点,将落入同一超立方体的样本认为是一类。然后以这些样本的均值作为初始聚类的中心,实现了聚类中心的确定。... 针对传统的K-均值算法聚类时初始聚类中心难以确定的缺点,利用超立方体技术, 并依据同类样本中多数样本具有类似的子向量的特点,将落入同一超立方体的样本认为是一类。然后以这些样本的均值作为初始聚类的中心,实现了聚类中心的确定。通过仿真实验和应用于沙尘暴和非沙尘暴样本的分类,验证了此方法的有效性。 展开更多
关键词 k-均值算法 超立方体编码 中心
下载PDF
一种有效k-均值聚类中心的选取方法 被引量:9
3
作者 曹文平 《计算机与现代化》 2008年第3期95-97,共3页
基于k-均值算法的思想和关键技术,本文对于k-均值算法中的初始点的选取进行了深入的研究,提出了一种高性能初始点的选取算法并用实际数据进行测试,通过与常规的随机选取方法的比较,该算法具有更好的性能和健壮性。
关键词 k-均值 初始化 中心
下载PDF
推进式优化特征权重的K-中心点聚类方法 被引量:1
4
作者 陈新泉 《计算机工程与应用》 CSCD 北大核心 2011年第29期175-181,204,共8页
为获得更贴近于混合属性数据点集空间的相异性度量,从而探测出数据点集的更有意义的聚类分布,提出了一种推进式优化特征权重的K-中心点聚类算法。对该聚类算法进行了必要的讨论,给出其时间复杂度分析及算法收敛性分析。为实现该聚类算... 为获得更贴近于混合属性数据点集空间的相异性度量,从而探测出数据点集的更有意义的聚类分布,提出了一种推进式优化特征权重的K-中心点聚类算法。对该聚类算法进行了必要的讨论,给出其时间复杂度分析及算法收敛性分析。为实现该聚类算法的特征权重优化步骤,给出了二种不同的特征权重优化方法和几个自适应优化距离权重系数、目标函数系数的方法。这些优化方法在一定的理论层次上解决了相异性度量的自适应优化问题。通过几个UCI标准数据集验证了该聚类算法有时能取得更好的聚类质量,从而说明该加权聚类算法具有一定的有效性。给出了几点研究展望,为下一步的研究指明了方向。 展开更多
关键词 相异性度量 k-中心 有序属性 无序属性 混合属性
下载PDF
数据挖掘中聚类中心问题的光滑化和填充函数方法
5
作者 祝丽华 孙小玲 《应用数学与计算数学学报》 2007年第2期10-16,共7页
本文提出了数据挖掘中求解聚类中心问题的一种新方法.这类问题属于非凸非光滑全局最优化问题.我们首先利用光滑化方法将非光滑聚类函数用光滑函数逼近,然后对光滑化问题利用填充函数搜索其全局最优点.对不同数据库的数值试验表明,本文... 本文提出了数据挖掘中求解聚类中心问题的一种新方法.这类问题属于非凸非光滑全局最优化问题.我们首先利用光滑化方法将非光滑聚类函数用光滑函数逼近,然后对光滑化问题利用填充函数搜索其全局最优点.对不同数据库的数值试验表明,本文提出的算法是可行和有效的. 展开更多
关键词 数据挖掘 中心 光滑化函数 逐步求中心 填充函数
下载PDF
基于样本空间分布密度的初始聚类中心优化K-均值算法 被引量:53
6
作者 谢娟英 郭文娟 +1 位作者 谢维信 高新波 《计算机应用研究》 CSCD 北大核心 2012年第3期888-892,共5页
针对传统K-均值聚类算法对初始聚类中心敏感、现有初始聚类中心优化算法缺乏客观性,提出一种基于样本空间分布密度的初始聚类中心优化K-均值算法。该算法利用数据集样本的空间分布信息定义数据对象的密度,并根据整个数据集的空间信息定... 针对传统K-均值聚类算法对初始聚类中心敏感、现有初始聚类中心优化算法缺乏客观性,提出一种基于样本空间分布密度的初始聚类中心优化K-均值算法。该算法利用数据集样本的空间分布信息定义数据对象的密度,并根据整个数据集的空间信息定义了数据对象的邻域;在此基础上选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-均值聚类。UCI机器学习数据库数据集以及随机生成的带有噪声点的人工模拟数据集的实验测试证明,本算法不仅具有很好的聚类效果,而且运行时间短,对噪声数据有很强的抗干扰性能。基于样本空间分布密度的初始聚类中心优化K-均值算法优于传统K-均值聚类算法和已有的相关K-均值初始中心优化算法。 展开更多
关键词 k-均值 初始中心 邻域 样本分布密度
下载PDF
新的K-均值算法最佳聚类数确定方法 被引量:90
7
作者 周世兵 徐振源 唐旭清 《计算机工程与应用》 CSCD 北大核心 2010年第16期27-31,共5页
K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,... K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,将AP算法产生的聚类数作为聚类数搜索范围的上界kmax,并通过选择合适的有效性指标Silhouette指标,以及基于最大最小距离算法思想设定初始聚类中心,分析聚类效果,确定最佳聚类数。仿真实验和分析验证了以上算法方案的可行性。 展开更多
关键词 k-均值 有效性指标 初始中心
下载PDF
基于核函数动态分配聚类中心的DGK-Kmeans算法 被引量:3
8
作者 张晋逢 孙忠林 《软件导刊》 2019年第2期42-44,48,共4页
Kmeans算法存在两个主要缺陷,导致聚类结果准确率较低。为改善聚类效果,提出一种DGK-Kmeans算法。该算法选用核密度估计处理数据,得到备选聚类中心,依据平均类间相似度动态增加初始聚类中心个数,直至平均类间相似度大于前次计算值时,选... Kmeans算法存在两个主要缺陷,导致聚类结果准确率较低。为改善聚类效果,提出一种DGK-Kmeans算法。该算法选用核密度估计处理数据,得到备选聚类中心,依据平均类间相似度动态增加初始聚类中心个数,直至平均类间相似度大于前次计算值时,选取平均类内相似度最小时对应的聚类中心为初始聚类中心,进行Kmeans聚类计算。采用UCI标准数据集进行实验,证明改进后的DGK-Kmeans算法在聚类准确率和稳定性方面有很大提高。 展开更多
关键词 Kmeans算法 高斯核函数 动态中心
下载PDF
基于最优划分的K-Means初始聚类中心选取算法 被引量:62
9
作者 张健沛 杨悦 +1 位作者 杨静 张泽宝 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2586-2590,共5页
针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自... 针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自身分布特点确定K-Means算法的初始聚类中心,无需预设k值,减少了算法结果对参数的依赖,提高算法运算效率及准确率。实验结果表明,利用该算法改进的K-Means算法,运算时间明显减少,其聚类结果准确率以及算法效率均得到显著提高。 展开更多
关键词 K—Means算法 初始中心 直方图 最优划分方法
下载PDF
基于密度的K-means聚类中心选取的优化算法 被引量:48
10
作者 周炜奔 石跃祥 《计算机应用研究》 CSCD 北大核心 2012年第5期1726-1728,共3页
针对传统的K-means算法对于初始聚类中心点和聚类数的敏感问题,提出了一种优化初始聚类中心选取的算法。该算法针对数据对象的分布密度以及计算最近两点的垂直中点方法来确定k个初始聚类中心,再结合均衡化函数对聚类个数进行优化,以获... 针对传统的K-means算法对于初始聚类中心点和聚类数的敏感问题,提出了一种优化初始聚类中心选取的算法。该算法针对数据对象的分布密度以及计算最近两点的垂直中点方法来确定k个初始聚类中心,再结合均衡化函数对聚类个数进行优化,以获得最优聚类。采用标准的UCI数据集进行实验对比,发现改进后的算法相比传统的算法有较高的准确率和稳定性。 展开更多
关键词 k-均值 数据挖掘 中心 垂直中点 密度
下载PDF
基于K-中心点聚类的模糊航迹关联算法 被引量:6
11
作者 白浩 赵凯 +1 位作者 王越 薄拾 《计算机应用》 CSCD 北大核心 2015年第A01期310-312,共3页
为提高目标航迹相交和近距平行状态时航迹关联的正确率,提出了一种基于K-中心点聚类的模糊航迹关联算法。该算法基于K-中心点聚类算法,将系统航迹作为聚类中心,采用局部航迹与系统航迹关联的策略,为描述航迹间的相似性,采用模糊分析方法... 为提高目标航迹相交和近距平行状态时航迹关联的正确率,提出了一种基于K-中心点聚类的模糊航迹关联算法。该算法基于K-中心点聚类算法,将系统航迹作为聚类中心,采用局部航迹与系统航迹关联的策略,为描述航迹间的相似性,采用模糊分析方法,综合考虑各个因素的影响,构造模糊关联矩阵,并利用历史信息和先验知识进行航迹关联。仿真表明该算法在航迹相交状态下,相交时刻关联正确率比K-medoids聚类算法提高5%左右,近距平行状态下关联正确率的收敛速度优于K-medoids聚类算法。 展开更多
关键词 航迹关联 系统航迹 k-中心 模糊分析
下载PDF
密度峰值优化初始中心的K-medoids聚类算法 被引量:27
12
作者 谢娟英 屈亚楠 《计算机科学与探索》 CSCD 北大核心 2016年第2期230-247,共18页
针对快速K-medoids聚类算法和方差优化初始中心的K-medoids聚类算法存在需要人为给定类簇数,初始聚类中心可能位于同一类簇,或无法完全确定数据集初始类簇中心等缺陷,受密度峰值聚类算法启发,提出了两种自适应确定类簇数的K-medoids算... 针对快速K-medoids聚类算法和方差优化初始中心的K-medoids聚类算法存在需要人为给定类簇数,初始聚类中心可能位于同一类簇,或无法完全确定数据集初始类簇中心等缺陷,受密度峰值聚类算法启发,提出了两种自适应确定类簇数的K-medoids算法。算法采用样本x i的t最近邻距离之和倒数度量其局部密度ρi,并定义样本x i的新距离δi,构造样本距离相对于样本密度的决策图。局部密度较高且相距较远的样本位于决策图的右上角区域,且远离数据集的大部分样本。选择这些样本作为初始聚类中心,使得初始聚类中心位于不同类簇,并自动得到数据集类簇数。为进一步优化聚类结果,提出采用类内距离与类间距离之比作为聚类准则函数。在UCI数据集和人工模拟数据集上进行了实验测试,并对初始聚类中心、迭代次数、聚类时间、Rand指数、Jaccard系数、Adjusted Rand index和聚类准确率等经典聚类有效性评价指标进行了比较,结果表明提出的K-medoids算法能有效识别数据集的真实类簇数和合理初始类簇中心,减少聚类迭代次数,缩短聚类时间,提高聚类准确率,并对噪音数据具有很好的鲁棒性。 展开更多
关键词 k-medoids算法 初始中心 密度峰值 准则函数
下载PDF
基于密度和距离积的聚类中心选取方法 被引量:5
13
作者 樊晓光 路钊 +2 位作者 王久崇 李国栋 谢朝政 《测控技术》 CSCD 北大核心 2013年第10期152-154,共3页
针对传统K-均值聚类算法初始聚类中心和聚类数目确定困难的问题,提出了基于密度统计法和最大距离乘积法的聚类中心选取方法。该方法通过对样本空间网格化,选出局部包含样本最多的网格,并对这些局部最优网格内的样本点进行ε邻域密度统计... 针对传统K-均值聚类算法初始聚类中心和聚类数目确定困难的问题,提出了基于密度统计法和最大距离乘积法的聚类中心选取方法。该方法通过对样本空间网格化,选出局部包含样本最多的网格,并对这些局部最优网格内的样本点进行ε邻域密度统计,然后取邻域密度最大且相距最远的两个样本点为聚类中心进行一次聚类。计算每个样本点到各个聚类中心的距离的积,取距离积最大的样本点为下一个聚类中心,并以此循环聚类。仿真实验表明,该方法在聚类精度上具有明显优势。 展开更多
关键词 k-均值算法 中心 密度统计 最大距离积
下载PDF
余弦度量和适应度函数改进的聚类方法 被引量:4
14
作者 施侃晟 刘海涛 +2 位作者 白英彩 宋文涛 洪亮亮 《电子科技大学学报》 EI CAS CSCD 北大核心 2013年第4期621-624,共4页
K-均值算法因其简单和高效性,在文本聚类中占有重要地位。针对传统的K-均值算法对初始点敏感、易陷入局部最优的问题,结合遗传算法已经成为一种趋势。在充分发挥K-均值算法的高效性的同时,该文利用遗传算法的全局自适应优化特点克服了... K-均值算法因其简单和高效性,在文本聚类中占有重要地位。针对传统的K-均值算法对初始点敏感、易陷入局部最优的问题,结合遗传算法已经成为一种趋势。在充分发挥K-均值算法的高效性的同时,该文利用遗传算法的全局自适应优化特点克服了对初始点敏感的问题。同时,以余弦度量评价对象间的相似性并以此构造新的遗传算法适应度函数、收敛准则以及遗传算法种群更新方式,提高了K-均值和遗传算法这种结合方式的聚类精度,并增强了该结合算法的稳定性。 展开更多
关键词 遗传算法 适应度函数 k-均值算法 相似性度量 文本
下载PDF
基于正序迭代选择策略的聚类中心自动选择方法 被引量:4
15
作者 王万良 吕闯 +3 位作者 赵燕伟 高楠 杨小涵 张兆娟 《模式识别与人工智能》 EI CSCD 北大核心 2019年第2期151-160,共10页
针对密度峰值聚类算法的决策函数不能自动有效地确定聚类中心的问题,提出自动确定聚类中心的密度峰值聚类算法.首先,通过归一化处理,使决策函数中的两个变量分布均匀.然后,在确定聚类中心时,提出正序迭代选择策略,即根据聚类核心点数目... 针对密度峰值聚类算法的决策函数不能自动有效地确定聚类中心的问题,提出自动确定聚类中心的密度峰值聚类算法.首先,通过归一化处理,使决策函数中的两个变量分布均匀.然后,在确定聚类中心时,提出正序迭代选择策略,即根据聚类核心点数目的变化趋势搜索拐点,并以拐点之前的点作为聚类中心,完成聚类.最后,在UCI数据集上验证文中算法的性能,算法在未提高时间复杂度的情况下,可以对任意分布形状的数据集进行聚类,具有较好的适应性和聚类效果. 展开更多
关键词 中心 决策函数 正序迭代 密度峰值 数据挖掘
下载PDF
一种选取初始聚类中心的方法 被引量:19
16
作者 刘立平 孟志青 《计算机工程与应用》 CSCD 北大核心 2004年第8期179-180,共2页
对k平均值聚类法中初始聚类中心的选取问题进行了深入研究,给出了一个较好的聚类中心选取算法。该算法也可以用于需要确定初始中心的其它聚类算法。实验结果表明该算法的效果较好。
关键词 k平均值方法 初始中心
下载PDF
采用中心聚类与PSO的RBF网络设计方法 被引量:3
17
作者 刘俊 商秀芹 +2 位作者 卢建刚 陈金水 孙优贤 《计算机工程与应用》 CSCD 北大核心 2009年第36期212-215,共4页
基于中心聚类法与微粒群(PSO)优化方法,提出一种径向基函数(RBF)网络的设计算法。算法采用中心聚类方法对输入样本数据进行聚类处理,自适应地确定RBF网络隐含层的初始参数;利用修正全局最优解计算方法的经典PSO算法优化RBF网络隐含层参... 基于中心聚类法与微粒群(PSO)优化方法,提出一种径向基函数(RBF)网络的设计算法。算法采用中心聚类方法对输入样本数据进行聚类处理,自适应地确定RBF网络隐含层的初始参数;利用修正全局最优解计算方法的经典PSO算法优化RBF网络隐含层参数,进一步修正网络结构参数;输出层权值采用带遗忘因子的递推最小二乘算法在线更新。采用该方法建立炼铁过程中烧结矿成分与转鼓强度关系的预测模型,并用现场数据加以验证;实验结果表明该方法收敛速度快,所建立的模型具有较高的预测精度,可用于复杂非线性系统建模。 展开更多
关键词 中心 微粒群优化 径向基函数 递推最小二乘 转鼓强度
下载PDF
一种基于模糊聚类的隶属函数定义方法 被引量:8
18
作者 孙逊 胡光锐 李剑萍 《计算机应用与软件》 CSCD 北大核心 2005年第7期86-88,共3页
隶属函数的确定是模糊集合理论及其应用的基本而关键的问题。本文提出了一种基于模糊聚类的、以训练样本数据为依据的、自动地确定模糊集合隶属函数的方法,为开发模糊系统节省了大量的时间和精力。
关键词 隶属函数 模糊 定义方法 模糊集合理论 训练样本 模糊系统 数据为
下载PDF
基于人工蜂群的三支k-means聚类算法 被引量:4
19
作者 徐天杰 王平心 杨习贝 《计算机科学》 CSCD 北大核心 2023年第6期116-121,共6页
聚类在数据挖掘技术中起着至关重要的作用。传统的聚类算法都是硬聚类算法,即对象要么属于一个类,要么不属于一个类,在处理不确定数据时,强制划分会带来决策错误。三支k-means聚类算法可以对边界不确定数据进行更加合理的分类,但仍然存... 聚类在数据挖掘技术中起着至关重要的作用。传统的聚类算法都是硬聚类算法,即对象要么属于一个类,要么不属于一个类,在处理不确定数据时,强制划分会带来决策错误。三支k-means聚类算法可以对边界不确定数据进行更加合理的分类,但仍然存在对初始聚类中心敏感的问题。为解决这一问题,将人工蜂群算法与三支k-means聚类算法相结合,提出了一种基于人工蜂群的三支k-means聚类算法。通过定义类内聚集度函数和类间离散度函数来构造蜜源的适应度函数,引导蜂群向高质量的蜜源进行全局搜索。利用蜂群之间不同角色的相互协作与互换,对数据集进行多次迭代聚类,找到最优的蜜源位置,作为初始聚类中心,并在此基础上交替迭代聚类。实验证明,该方法对聚类结果的性能指标有所提高。在UCI数据集上的实验验证了该算法的有效性。 展开更多
关键词 三支k-means算法 人工蜂群算法 适应度函数 初始中心 蜜源
下载PDF
基于逻辑回归函数的加权K-means聚类算法 被引量:8
20
作者 林丽 薛芳 《集美大学学报(自然科学版)》 CAS 2021年第2期139-145,共7页
传统K-means聚类算法通过欧式距离计算样本的相似度,将数据所有的属性特征均平等对待,忽略每个属性特征的不同贡献,导致样本相似度计算的准确率不高。针对这个不足,提出一种特征加权的K-means算法进行优化。首先,运用Softmax和Sigmoid... 传统K-means聚类算法通过欧式距离计算样本的相似度,将数据所有的属性特征均平等对待,忽略每个属性特征的不同贡献,导致样本相似度计算的准确率不高。针对这个不足,提出一种特征加权的K-means算法进行优化。首先,运用Softmax和Sigmoid逻辑回归函数计算特征权重,使得加权的欧式距离更能准确地表示样本相似度;其次,优化初始聚类中心选择策略,选择距离较大的K个样本作为初始聚类中心,可有效避免样本的错误聚类及空簇问题。实验结果表明,在UCI标准数据集中采用加权K-means聚类算法可以有效减少迭代次数,提高聚类的准确率、精确率和召回率。 展开更多
关键词 欧式距离 特征加权的k-means算法 逻辑回归函数 初始中心
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部