本文提出了一种改进的K-均值聚类算法,在基本K-均值算法的基础上运用基于密度选择初始中心点并且通过学习特征权值改进聚类效果,克服了基本K-均值算法初始中心点难以确定、聚类结果不稳定的缺点;然后建立了一种基于改进的K-均值算法的...本文提出了一种改进的K-均值聚类算法,在基本K-均值算法的基础上运用基于密度选择初始中心点并且通过学习特征权值改进聚类效果,克服了基本K-均值算法初始中心点难以确定、聚类结果不稳定的缺点;然后建立了一种基于改进的K-均值算法的人事管理系统聚类分析模型,本模型采用SQL Server 2000数据库实现并成功运用于国内一家知名软件企业的人力资源管理系统中,为该企业选聘人才和用好人才提供了有益的参考。展开更多
This paper proposes a K-Means clustering method based on genetic algorithm. We compare our method with the traditional K-Means method and clustering method based on simple genetic algorithm. The comparison proves that...This paper proposes a K-Means clustering method based on genetic algorithm. We compare our method with the traditional K-Means method and clustering method based on simple genetic algorithm. The comparison proves that our method achieves a better result than the other two. The drawback of this method is a comparably slower speed in clustering.展开更多
为了提高网络入侵的检测率,以降低误检率,提出一种基于均值聚分析和多层核心集凝聚算法相融合的网络入侵检的网络入侵检测模型。利用K-means算法对多层核心集凝聚算法的核心集,用其替代原粗化过程得到的顶层核心集,实现了顶层核心集的...为了提高网络入侵的检测率,以降低误检率,提出一种基于均值聚分析和多层核心集凝聚算法相融合的网络入侵检的网络入侵检测模型。利用K-means算法对多层核心集凝聚算法的核心集,用其替代原粗化过程得到的顶层核心集,实现了顶层核心集的快速准确定位,简化了算法的计算复杂性。然后,将KM-Mul CA算法应用到入侵检测模型,最后采用KDD Cup 99数据集进行仿真实验。结果表明,本模型可以获得理想的网络入侵检测率和误检率。展开更多
文摘本文提出了一种改进的K-均值聚类算法,在基本K-均值算法的基础上运用基于密度选择初始中心点并且通过学习特征权值改进聚类效果,克服了基本K-均值算法初始中心点难以确定、聚类结果不稳定的缺点;然后建立了一种基于改进的K-均值算法的人事管理系统聚类分析模型,本模型采用SQL Server 2000数据库实现并成功运用于国内一家知名软件企业的人力资源管理系统中,为该企业选聘人才和用好人才提供了有益的参考。
文摘This paper proposes a K-Means clustering method based on genetic algorithm. We compare our method with the traditional K-Means method and clustering method based on simple genetic algorithm. The comparison proves that our method achieves a better result than the other two. The drawback of this method is a comparably slower speed in clustering.
文摘为了提高网络入侵的检测率,以降低误检率,提出一种基于均值聚分析和多层核心集凝聚算法相融合的网络入侵检的网络入侵检测模型。利用K-means算法对多层核心集凝聚算法的核心集,用其替代原粗化过程得到的顶层核心集,实现了顶层核心集的快速准确定位,简化了算法的计算复杂性。然后,将KM-Mul CA算法应用到入侵检测模型,最后采用KDD Cup 99数据集进行仿真实验。结果表明,本模型可以获得理想的网络入侵检测率和误检率。