期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于运动自适应的非均匀比率图像扩展算法 被引量:1
1
作者 张光烈 郑南宁 +1 位作者 梁峰 陈茜 《电视技术》 北大核心 2003年第3期16-18,共3页
讨论了传统的4∶3格式的标准清晰度电视信号转换为16∶9格式的高清晰度电视信号的运动自适应的非均匀比率扩展变换算法。算法结合视频图像的运动检测,采用K-均值聚类算法,根据图像的运动重心(motioncenterofgravity-MCOG)选择合适的扩... 讨论了传统的4∶3格式的标准清晰度电视信号转换为16∶9格式的高清晰度电视信号的运动自适应的非均匀比率扩展变换算法。算法结合视频图像的运动检测,采用K-均值聚类算法,根据图像的运动重心(motioncenterofgravity-MCOG)选择合适的扩展比率,并针对不同的图像区域进行扩展变换。算法符合人的视觉系统对图像的运动区域具有较强感知度的视觉特性,有效的减小了视频格式转换的图像变形。实验表明了本文提出算法的有效性。 展开更多
关键词 运动自适应 匀比率图像扩展算法 k-均算法 视频格式转换 图像运动重心
下载PDF
Short-term photovoltaic power prediction using combined K-SVD-OMP and KELM method 被引量:2
2
作者 LI Jun ZHENG Danyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期320-328,共9页
For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the i... For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy. 展开更多
关键词 photovoltaic power prediction sparse representation k-mean singular value decomposition algorithm(k-SVD) kernel extreme learning machine(KELM)
下载PDF
A multi-view K-multiple-means clustering method
3
作者 ZHANG Nini GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期405-411,共7页
The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be ... The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results. 展开更多
关键词 k-multiple-means(KMM)clustering weight parameters multi-view k-multiple-means(MKMM)method
下载PDF
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
4
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis k-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
下载PDF
Research on User Profile Construction Method Based on Improved TF-IDF Algorithm
5
作者 SHAO Ze-ming LI Yu-ang +4 位作者 YANG Ke WANG Guo-peng LIU Xing-guo CHEN Han-ning SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第6期110-116,共7页
In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limita... In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limitations when evaluating the impact of words on classification results.Consequently,an improved TF-IDF-K algorithm was introduced in this study,which included an equalization factor,aimed at constructing user profiles by processing and analyzing user search records.Through the training and prediction capabilities of a Support Vector Machine(SVM),it enabled the prediction of user demographic attributes.The experimental results demonstrated that the TF-IDF-K algorithm has achieved a significant improvement in classification accuracy and reliability. 展开更多
关键词 TF-IDF-K algorithm User profiling Equalization factor SVM
下载PDF
Matrix dimensionality reduction for mining typical user profiles 被引量:2
6
作者 陆建江 徐宝文 +1 位作者 黄刚石 张亚非 《Journal of Southeast University(English Edition)》 EI CAS 2003年第3期231-235,共5页
Recently clustering techniques have been used to automatically discover typical user profiles. In general, it is a challenging problem to design effective similarity measure between the session vectors which are usual... Recently clustering techniques have been used to automatically discover typical user profiles. In general, it is a challenging problem to design effective similarity measure between the session vectors which are usually high-dimensional and sparse. Two approaches for mining typical user profiles, based on matrix dimensionality reduction, are presented. In these approaches, non-negative matrix factorization is applied to reduce dimensionality of the session-URL matrix, and the projecting vectors of the user-session vectors are clustered into typical user-session profiles using the spherical k -means algorithm. The results show that two algorithms are successful in mining many typical user profiles in the user sessions. 展开更多
关键词 Web usage mining non-negative matrix factorization spherical k-means algorithm
下载PDF
Two-Stage Resource Allocation Scheme for Three-Tier Ultra-Dense Network 被引量:5
7
作者 Junwei Huang Pengguang Zhou +2 位作者 Kai Luo Zhiming Yang Gongcheng He 《China Communications》 SCIE CSCD 2017年第10期118-129,共12页
In 5 G Ultra-dense Network(UDN), resource allocation is an efficient method to manage inter-small-cell interference. In this paper, a two-stage resource allocation scheme is proposed to supervise interference and reso... In 5 G Ultra-dense Network(UDN), resource allocation is an efficient method to manage inter-small-cell interference. In this paper, a two-stage resource allocation scheme is proposed to supervise interference and resource allocation while establishing a realistic scenario of three-tier heterogeneous network architecture. The scheme consists of two stages: in stage I, a two-level sub-channel allocation algorithm and a power control method based on the logarithmic function are applied to allocate resource for Macrocell and Picocells, guaranteeing the minimum system capacity by considering the power limitation and interference coordination; in stage II, an interference management approach based on K-means clustering is introduced to divide Femtocells into different clusters. Then, a prior sub-channel allocation algorithm is employed for Femtocells in diverse clusters to mitigate the interference and promote system performance. Simulation results show that the proposed scheme contributes to the enhancement of system throughput and spectrum efficiency while ensuring the system energy efficiency. 展开更多
关键词 ultra-dense network resource allocation logarithmic function k-means
下载PDF
Research on natural language recognition algorithm based on sample entropy
8
作者 Juan Lai 《International Journal of Technology Management》 2013年第2期47-49,共3页
Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly ... Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly extract the sample entropy of mixed signal, mean and variance to calculate each signal sample entropy, finally uses the K mean clustering to recognize. The simulation results show that: the recognition rate can be increased to 89.2% based on sample entropy. 展开更多
关键词 sample entropy voice activity detection speech processing
下载PDF
Impulsive component extraction using shift-invariant dictionary learning and its application to gear-box bearing early fault diagnosis 被引量:3
9
作者 ZHANG Zhao-heng DING Jian-ming +1 位作者 WU Chao LIN Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期824-838,共15页
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ... The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing. 展开更多
关键词 gear-box bearing fault diagnosis shift-invariant k-means singular value decomposition impulsive component extraction
下载PDF
Integrating OWA and Data Mining for Analyzing Customers Churn in E-Commerce 被引量:1
10
作者 CAO Jie YU Xiaobing ZHANG Zhifei 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第2期381-392,共12页
Customers are of great importance to E-commerce in intense competition.It is known that twenty percent customers produce eighty percent profiles.Thus,how to find these customers is very critical.Customer lifetime valu... Customers are of great importance to E-commerce in intense competition.It is known that twenty percent customers produce eighty percent profiles.Thus,how to find these customers is very critical.Customer lifetime value(CLV) is presented to evaluate customers in terms of recency,frequency and monetary(RFM) variables.A novel model is proposed to analyze customers purchase data and RFM variables based on ordered weighting averaging(OWA) and K-Means cluster algorithm.OWA is employed to determine the weights of RFM variables in evaluating customer lifetime value or loyalty.K-Means algorithm is used to cluster customers according to RFM values.Churn customers could be found out by comparing RFM values of every cluster group with average RFM.Questionnaire is conducted to investigate which reasons cause customers dissatisfaction.Rank these reasons to help E-commerce improve services.The experimental results have demonstrated that the model is effective and reasonable. 展开更多
关键词 Customer life value E-COMMERCE k-MEANS OWA.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部