期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一种改进K-奇异值分解稀疏表示图像去噪算法 被引量:8
1
作者 孔英会 胡启杨 《科学技术与工程》 北大核心 2018年第1期287-292,共6页
为解决传统K-奇异值分解(K-SVD)算法字典训练耗时过长以及低信噪比情形下去噪效果不佳的问题,提出了一种改进算法。首先将原始含噪图像进行高低频分离,然后对图像的高频部分使用基于残差比阈值的批量正交匹配追踪算法(Batch-OMP)实现稀... 为解决传统K-奇异值分解(K-SVD)算法字典训练耗时过长以及低信噪比情形下去噪效果不佳的问题,提出了一种改进算法。首先将原始含噪图像进行高低频分离,然后对图像的高频部分使用基于残差比阈值的批量正交匹配追踪算法(Batch-OMP)实现稀疏重构,最后将图像的高低频部分叠加完成最终的去噪。实验结果表明,相较于小波变换去噪、DCT稀疏表示去噪以及传统K-SVD稀疏表示去噪,改进的算法能够更好地保留图像的边缘轮廓信息,并且去噪时间明显缩短。 展开更多
关键词 k-奇异分解(k-SVD)算法 图像去噪 残差比阈 稀疏表示
下载PDF
基于VGG网络与深层字典的低剂量CT图像去噪算法 被引量:3
2
作者 周博超 韩雨男 +2 位作者 桂志国 李郁峰 张权 《计算机工程》 CAS CSCD 北大核心 2022年第4期191-196,205,共7页
低剂量计算机断层扫描(LDCT)能够有效降低X射线辐射对人体健康造成的危害,已广泛应用于医学临床诊断。针对LDCT图像中存在大量的斑点噪声和条形伪影的问题,提出一种结合改进的VGG网络和深层字典的图像去噪算法,以弥补深层字典去噪能力... 低剂量计算机断层扫描(LDCT)能够有效降低X射线辐射对人体健康造成的危害,已广泛应用于医学临床诊断。针对LDCT图像中存在大量的斑点噪声和条形伪影的问题,提出一种结合改进的VGG网络和深层字典的图像去噪算法,以弥补深层字典去噪能力的不足。在深层字典学习到第一层字典原子和稀疏矩阵后,通过改进的VGG网络将字典原子区分为信息原子和噪声原子,同时将稀疏矩阵中噪声原子所对应的元素设置为零,降低噪声原子对图像去噪效果的影响。实验结果表明,与K-SVD算法、正则化K-SVD算法和深层字典学习算法相比,该算法的峰值信噪比和结构相似性指数平均提高了1.4 dB和0.03,能够有效抑制LDCT图像噪声和伪影,且保留较多的边缘和细节信息。 展开更多
关键词 低剂量计算机断层扫描 k-奇异值分解算法 VGG网络 深层字典 图像去噪
下载PDF
基于K-PSO稀疏表示的故障分类方法研究 被引量:1
3
作者 傅蒙蒙 王培良 《计算机科学》 CSCD 北大核心 2016年第12期302-306,共5页
针对现代复杂生产过程中不能准确识别、分类多种故障的问题,提出一种改进的稀疏表示故障分类方法。该方法依据信号的稀疏表示来判断故障所属类别。其具体实现过程首先是利用K-均值奇异值分解(K-SVD)算法构造过完备字典,使其包含原信息... 针对现代复杂生产过程中不能准确识别、分类多种故障的问题,提出一种改进的稀疏表示故障分类方法。该方法依据信号的稀疏表示来判断故障所属类别。其具体实现过程首先是利用K-均值奇异值分解(K-SVD)算法构造过完备字典,使其包含原信息的主要特征,再通过粒子群(PSO)算法有效地搜索并寻找稀疏分解中产生的在过完备字典范围中的最匹配原子,最后利用以该匹配原子为基础的稀疏表示结果实现对多故障问题的分类识别。运用数值仿真验证了该算法的可行性和有效性。同时,针对柴油机燃油系统的故障分类,将该方法与基于BP神经网络和SVM的分类识别方法进行比较,实验表明该算法在故障分类上具有更好的效果。 展开更多
关键词 稀疏表示 k-奇异分解算法 粒子群算法 故障分类
下载PDF
Short-term photovoltaic power prediction using combined K-SVD-OMP and KELM method 被引量:2
4
作者 LI Jun ZHENG Danyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期320-328,共9页
For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the i... For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy. 展开更多
关键词 photovoltaic power prediction sparse representation k-mean singular value decomposition algorithm(k-SVD) kernel extreme learning machine(KELM)
下载PDF
基于字典描述向量的实时图像配准 被引量:6
5
作者 王健博 朱明 《光学精密工程》 EI CAS CSCD 北大核心 2014年第6期1613-1621,共9页
针对传统的特征向量计算方法复杂度高、耗时长、占用内存多等缺点,提出了一种基于字典描述向量的图像配准方法。该算法采用K-奇异值分解(K-SVD)方法生成字典,通过比较特征点临近区域图像与字典中基底图像的相似性得到特征描述向量,从而... 针对传统的特征向量计算方法复杂度高、耗时长、占用内存多等缺点,提出了一种基于字典描述向量的图像配准方法。该算法采用K-奇异值分解(K-SVD)方法生成字典,通过比较特征点临近区域图像与字典中基底图像的相似性得到特征描述向量,从而降低了描述向量的计算复杂度,提高了算法的实时性。实施该算法时,首先通过随机KD树算法对参考图像和待配准图像的特征点进行匹配,然后使用经典随机抽样一致性(RANSAC)算法剔除误匹配点对,最后应用最小二乘法对得到的匹配点对进行参数估计,从而得到两幅待配准图像的空间几何变换关系。实验表明结果,本文提出的描述向量计算方法降低了描述向量的存储空间,加快了特征匹配的速度,可在保证配准准确度的前提下实现配准过程。 展开更多
关键词 字典 特征描述向量 图像配准 k-奇异值分解算法
下载PDF
数字化地震信号压缩方法研究 被引量:1
6
作者 李寅 王立夫 孙怡 《计算机工程》 CAS CSCD 北大核心 2016年第9期279-285,共7页
传统的地震信号压缩方法没有根据地震信号本身的特点对其进行处理,而将其作为普通信号,压缩效果较差。为此,利用地震信号的自相似性,提出一种聚类和字典学习算法相结合的方法。采用模糊C均值聚类算法对样本进行聚类,构建字典学习模型,... 传统的地震信号压缩方法没有根据地震信号本身的特点对其进行处理,而将其作为普通信号,压缩效果较差。为此,利用地震信号的自相似性,提出一种聚类和字典学习算法相结合的方法。采用模糊C均值聚类算法对样本进行聚类,构建字典学习模型,通过对目标函数的变换,使得模型变换为普通的字典学习模型,并使用K-奇异值分解算法(K-SVD)对字典学习模型进行求解。实验结果表明,当该方法压缩比范围在8.5~18.8之间时,信噪比高于离散余弦变换方法 1 dB^4.5 dB,高于gabor方法 1 dB^4 dB,比单纯使用K-SVD算法高0.5 dB^1 dB。 展开更多
关键词 稀疏分解 k-奇异值分解算法 地震信号 自相似性 编码
下载PDF
Impulsive component extraction using shift-invariant dictionary learning and its application to gear-box bearing early fault diagnosis 被引量:3
7
作者 ZHANG Zhao-heng DING Jian-ming +1 位作者 WU Chao LIN Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期824-838,共15页
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ... The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing. 展开更多
关键词 gear-box bearing fault diagnosis shift-invariant k-means singular value decomposition impulsive component extraction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部